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ABSTRACT 

A range network i s  defined to consist of ground stations and targets where  

only distances between the two sets  of points are  observed. Such a network 

i s  said to be fundamental when only those six constraints are  used which are 

needed to define the coordinate system for an adjustment. In some cases 

when ground stations and/or targets have certain configurations, a unique 

adjustment in terms of coordinates may be impossible, even when the number 

of observations i s  sufficient and the coordinate system i s  uniquely defined, 

Such configurations are said to be critical. 

In this study, critical configurations are  investigated in two separate 

chapters. The first  deals with ground stations lying all in a plane ancl the 

second deals with ground stations generally distributed. The two kinds of 

problems require different mathematical treatment and lead to quite different 

conclusions. 

A typical critical configuration when all ground stations are  in a plane 

arises when they all lie on one second order curve. When ground stations are 

generally distributed a typical critical configuration may be represented by 

all points of a network (ground stations and targets) lying on one second order 

surface. If these and some other more complex distributions of points are 

avoided, an adjustment of range networks yields a unique solution. 

iii 
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1. TREATMENT OF RANGE OBSERVATIONS 

WITH ALL GROUND STATIONS IN PLANE 

1.1 Introduction 

The goal of the present study is  to investigate the possibility to use the 

range observations between a set  of ground stations and a set  of targets (satel- 

lite points) which together a r e  said to form a range network. A s  in most 

geodetic adjustments, the mathematical model f o r  range observations is treated 

in a linearized form. The adjustment procedure applied to this model is the 

least squares method. 

The only constraints necessary in range networks a r e  the ones needed f o r  

defining the coordinate system; three to define i ts  position and three to define 

its orientation, i. e . ,  six constraints. Range observations being invariant 

with respect to the coordinate system, they do not offer information about it; 

thus, when an adjustment i s  performed in t e r n s  of coordinates a certain 

coordinate system has  to be defined. Any coordinate system thus defined 

yields theoretically the same adjusted values of distances. In the theoretical 

part  of this investigation, a coordinate system is chosen such that the first 

ground station is  a t  its origin, the second one on i ts  x axis and the thrrd one 

in its x y  plane. For  practical computations, that coordinate system may be 

the most advantageous which renders the trace of the variance-covariance 

matrix for  the coordinates of all o r  certain selected points a minimum, Tile 

constraints defining the coordinate system in this manner a r e  called inner 

adjustment constraints. The idea of using inner adjustment constraints w a s  

f i r s t  presented [13 ;, then in j14 1 and [15 1, and recently in [ I ] ,  Annex E' 

and in [9 1. The problem of inner adjustment constraints i s  treated in great  

detail in [16  1. Their application in connection with an actual adjustment 

appeared in r 2  1 and in [ 3  1. 



b-hen only six coordinate-system-defining constraints are  used, the net- 

work is said to be fundamental. In this study, only fundamental networks are 

investigated. 

The type of observations considered in such networks are ranges from 

ground stations to satellite points. No further distances o r  any other type of 

measurements a re  used. In certain cases when ground stations and/or targets 

are situated in special configurations, a unique adjustment is impossible even 

if the number of observations is sufficient. Such critical configurations result 

in singular solutions and their investigation i s  the subject of this work. 

In this chapter, the ground stations are  considered to be in one plane. In 

sections 1.2 and 1.3, three ground stations a r e  considered to observe ranges 

to all the satellite points. In section 1.4, the principle of replacing of stations 

i s  introduced, which allows to use the derivations made in previous sections 

for 2~ more general case, when not all satellite positions a re  observed by three 

stations, This leads to a case known in practice a s  "leapfrogging". 

The basic idea used in treating the networks where the ground stations a re  

approximately in one plane is to stipulate that theoretically all ground stations 

are exactly in the plane and to find the critical loci of the points in the network 

which. will result in a singular solution. Applications for  practical cases (where 

the condition of coplanarity is only approximately fulfilled) follows from the 

fact that conditions leading to singularity in theory lead to near-singularity 

in practice. Examples of the correspondence between such theoretical and 

practical configuration-conditions a r e  the following: 

(a) Targets on a straight line in theory correspond to 

satellite positions on a relatively short pass in practice. 

(b) Ground stations lying on a second order (plane) curve in 

theory correspond in practice to ground stations in projection 

on the (best fitting) plane lying on o r  near a second order 

curve. 



(c) A satellite group lying theoretically in a plane 

corresponds in practice to short satellite passes of 

approximately the same altitude above the ground net- 

work. This situation can ar ise  when the same satellite 

i s  observed on different passes. The plane fitted to 

such targets i s  approximately parallel to the plane 

fitted to the ground stations. 

The main outcome of this investigation will be the detection of singularity 

for  the theoretical cases and the establishment of rules to avoid it. This i s  

equivalent to having range measurements alone as  a working observational 

mode f o r  fundamental range networks with ground stations lying in o r  near 

a plane. 

1.2 Basic Principle to Detect Singularity When Using Range 

F i r s t  a coordinate system will be defined, in which a cluster of points 

will be adjusted so a s  to yield the relative position of all its points. Whenever 

extra observations a r e  used, the least  squares adjustment will be applied. When 

this relative position with the same adjusted ranges is unique o r  not unique, the 

problem i s  said to be non-singular o r  singular respectively. For  the sake of 

simplicity in the derivations (range observations a r e  invariant with respect t o  

the coordinate system), the origin of the coordinate system will be chosen to 

coincide with one ground station, the x axis will pass  through another, md 

the x y  plane will contain a third ground station. These will also be the three 

stations observing all the satellite points and will be numbered for  all 

the derivations and discussions a s  1, 2, and 3,respectively. The six eon- 

straints defining this coordinate system, called LOCAL COORDINATE 

SYSTEM are  the only constraints to be used and thus such cluster of points 

constitutes a fundamental network. The points 1, 2, and 3 before the adjustment 



in the above coordinate system have the coordinates (0, 0, O), ( x  0, O ) ,  (s, yg, 0) 

a d  after the adjustment the coordinates (0, 0, 0), (x:, 0, 0), (xt, y", 0) 

respectively (in order that x y plane of the local coordinate system be well 

defined, y, # 0 has to hold; similarly for x axis x2 # 0). 

Considering xa = x0 + d x ,  ya = yo + dy9 za = zO + dz, the above 

definition of the coordinate system corresponds to six constraints for the 

parameters, namely: 

En the following, the coordinates of the ground stations will be denoted 

by small letters and those of the satellite points by capital letters, as 

well a s  the corresponding corrections; thus dxf , dyi , dzi , denote corrections 

to the i th station and dXJ , dYj , dZ , denote corrections to the j th satellite. 

Next, the observation equations for  the least squares adjustment will be formed. 

Let a l j  , a$ , aTj , denote directional cosines of the line connecting station 

'5" with satellite "j" with respect to  the x, y, z axes of the local coordinate 

system. With v~ denoting the residual to ~ i ;  , observed distance between 

i and j , where L& + V ~ J  = L: (adjusted distance), the observation 

eqwtion for the distance i - j is of the form 

H e  r e  LiJ = L< - ~ i :  where L$ is the distance i -  j computed fro& 

preliminary (approximate) coordinates. 

i[n matrix form, the observation equations a r e  written as (writing X 

vector instead of dX ) : 

From the least squares adjustment it i s  obtained 



Positive definite P matrix contains weights of the observed quant,ities; 

when the observations a r e  uncorrelated and of equal precision (i. e. , coming 

from the same population of random er rors ) ,  then P = I (identi9 matrkx) 
- -- 

can be used; this will be assumed throughout in this study. 

The problem will then be singular if for the same set of La o r  V 

there a r e  different solution sets  X possible, o r ,  which is the s a n e ,  the 

solution vector X (and thus the relative position of the cluster poi~rats) 

corresponding to the same residual vector V is not unique. 

Otherwise the problem is non-singular. If X denotes one solrrtiein, - - 
X any other solutisn and if a X  = X - X , then a x  = 0 as the 

possibility characterizes a non- singular problem. 

then 

o r  

where o 2 u; o is %he, nu r of all observations, while u = 3 (number of ail. 

p-oints). - 6, i. e., the number of all unknown parameters. 

Whenever extra observations a re  used, o > u  and A i s  not a 

square matrix. 

Matrix equation (1.2-3) represents a homogenous system of "0" 

equations in the "u" inknowns, which has always a solution, namely the 

trivial solution. If rank A = u, then only the trivial solution of (1.2 -3)  is 

possible and thus the problem is non- singular. Correspondingly, such A 
b o x d  

matrix will be called here "non-slngular A". On the other hand, if ra& A< u, 



the aon-trivial solution of (1.2 -3) also exists and the problem i s  

s i n e l a r ,  with A matrix being called "singular At'. Thus, in the following 
(ox u) 

study, the column space of A will be dealt with. 

Now from (1. 2-3) it can be written for a typical row: 

atJ (ax, - axi) + a& ( ~ Y J  - a y i )  + a:j (az,  - 321) = 0 

or, using vector notation 

In this notation 

where, using preliminary coordinates, 

and where 

Due to the chosen coordinate system, which is the same for any solution 

X, it must also hold that 

- - - - - - 
dxl = 0 ,  dy, = 0 ,  dz, = 0 ;  dy2 = 0 ,  dzz= 0 ;  dz3 = 0 (1.2-5a) 



and consequently, using (1.2-1) and (1.2-4e), that 

An example of a coefficient matrix A of observation equations such as used 

in (1.2-3) i s  given in Table (1.2-1);there only the necessary number of observa- 

tions is present, i. e. , 0 = u. The notation 

represents the unit vector in the i - j direction; it  was f i rs t  introduced in (1,2-4e), 

The number of ground stations used in this example is seven and the correspond- 

ing necessary number of targets (satellite points) is fifteen. The stations observ- 

ing all the targets are numbered as 1 ,2 ,3 ;  the stations denoted as  7 , 5 , 6  observe 

four targets each; these targets are  numbered as  j,l - j,,, j,, - j2,, and jal - j,, , 

respectively. Station 4 in this particular example is assumed to observe targets 

j,,, j,,, and j,,. The coordinate system i s  defined as before, so that (1.2-5b) 

is fulfilled. In the headings of Table (1.2-I), ax,, ax,, and ay, pertain to the x 

coordinate of station 2, x coordinate of station 3, and y coordinate of station 3 

respectively. The notation agr, is designed to represent three columns for 

station i, i. e . ,  ax,, ay,, and 32,; the same holds also for axJrnn with respect to 

the satellite point j,. If more than a necessary number of observations w e r e  

used, the table would be expanded in an analogous manner: for each new station 

a three column block agr, and for each new target a new three column block 'iX 

would be added; for new observations between existing stations and targets, rows 

in the corresponding row block "From i" would be added. 

The satellite parameters will be now eliminated using stations I, 2, 3 

for which the relation (1.2-5b) holds. Since 1,2,3 observe all the satellites, 

the following equations will hold for any satellite point j : 











i = 3 . . .  G , ( ? x ,  - a%) + g j ( a Y ,  - ay3) + g ,  a z ,  = 0. ( 1 . 2 - 6 ~ )  

Simplifications xl = yl = zl = 0, y2 = 2 2  = 0, z3 = 0 due to  the 

chosen coordinate system yield in (1. 2-6a): 

1 az, = -- (x, ax, + Y ,  a Y j ) .  
zj (1.2-7a) 

Upon multiplication by s,, and s2, of (1.2-6a) and (1.2-6b) and taking the 

difference, i t  follows: 

ax, = (x2 - x,) s. 
x2 

Similarly for  (1.2-6a) and (1.2-6c) i t  i s  obtained: 

In these equations i t  i s  necessary that 

The f i r s t  two relations were  already used in the definition of the coordinate 

system; the l a s t  one means that the following derivations will hold only if 

no satell i te i s  in the plane of the ground stations 1 ,  2, and 3. Otherwise such 

a point could not be determined f rom stations 1 ,2 ,  and 3, even if these were  

all known; in the l inearized form,  the point could freely move in the direction 

perpendicular to the plane of stations 1 ,  2, and 3. Upon plugging the expres- 

sions (1.2-7b) and (1.2-7c) into (1.2-7a), i t  i s  obtained: 



The relations (1. 2-7a1), (1.2-7b) and (1.2-7c) express the variation of satellite 

parameters in terms of 22k , ,a , and thus make possible their 
x2 , Y 3  Y 3 

elimination in (1. 2-4a) for an arbitrary station i. After multiplying (1. 2 - 4 4  by 

s iJ ,  then by (-ZJ) and carrying out some algebraic operation, the following relation 

is obtained for any j : 

Similar approach was used in r l] ,  Annex A and in [lo] with these two main dif- 

ferences: f i rs t ,  only four ground stations, formingtbe groundnetwork observing 

simultaneously were considered, and second, only six satellite points were 

used, which means that no extra observations were considered in that derivation, 

The result (1.2-9) fo r  all stations i can be written in a matrix form as  
N N 

A a x = o .  (1.2-10) - - 
matrix i s  presented in Table (1.2-2). It i s  of dimension (o x u) 

where - 
o = o - 3 x (number of all satellite points) 

and - 
u = LP - 3 x (number of all satellite points). 

What was said for  the matrix A and ax of (1.2-3) applies also for the 
- - 

matrix and aX of (1.2-10). In particular, when dealing with "non-singular A", 

N 

onli trivial qolution for  aX is  possible to fulfill (1.2-10). - <u 
The expression A aX = 0 (pertaining to  ground stations) together with 

where s denotes any satellite point and S i s  the corresponding 





(3 x 3) mat r ix  obtained from (1.2-7b), (1.2-7c), and (1.2-7a') were  derived f rom the 
- - 

equation AaX = 0. Therefore,  any 3X = k g f u l f i l l i n g  this equation will a lso y ield AdX = 0. 

Thus whenever aX # 0 fulfills AaX = 0, it mus t  also hold that 8% # 0,  since ;;g = 0 

wouldimply that  PI ax, = 0 and consequently a X' = 0 using (1.2-7a') to (1.2-7e) 
iay.1 

-- 

f o r  each j ;  th is ,  however, would be a contradiction to  aX  # 0. Thus aX $ 0 ,  
N N 

fulfilling A aX = 0 implies 8% # 0, fulfilling A aX = 0. Conversely, whenever 
N N 

ax" f 0 fulfils AaX = 0, it must  a lso hold that aX iC 0 fulfils AaX = 0,  since a'% 
is a subset of ax. Clearly, trivial  solution f o r  3% corresponds to t r ivial  solution 

f o r  3X (due to  aXS = O), and t r ivial  solution fo r  ax corresponds t o  t r ivial  solution 

f o r  ax"(a%is a subset  of ax) .  It can be  concluded that whenever A is 

- 
singular o r  non-singular, i t s  corresponding A i s  also singular o r  non- singular, 

Consequently investigations pertaining to  the column space of will be  used rather 

than dealing with the column space of A. * 
I t  i s  noteworthy that in Table (1.2-1) the satel l i tes  observed from stations 

4,5, . . . i (together with the stations 1 , 2 , 3 )  may o r  may not be the same.  For 

that reason they were  denoted as j ,  j', 3. Neither does their  number in differei2t 

groups have to be the same. It  can  be observed that when the mentioned sateliite 

points a r e  the same in all the groups, i t  i s  the case  when all ground stations are 

observing simultaneously. When none of the satel l i tes  in different groups are the 

same,  it i s  the case  when only four ground stations observe simultaneously (stations 1, 

2 , 3 ,  and i, f o r  instance). This  occurs  in pract ice with SECOR observations. 

- N * This  can also be il lustrated by the following argument: If A aX = 0 
(which followed f rom A a X = 0) has  8% = 0 as the only possible solution, then ali 
the ground stations a r e  uniquely determined. But every satell i te point was observed 
f rom stations 1 , 2 , 3 ,  and did not l ie  in a plane with them. Thus these three stations 
alone (uniquely determined) would be sufficient fo r  the unique determinaticm of all 
the satell i tes,  which would then mean that the whole cluster  of points i s  uniquely 
determined. 



1 .3  Range Observational Mode Investigations 
with Observing Stations in Plane 

The? use of range observations when the observing ground stations l ie  exactly - 
in a plane is possible whenever A matri;, i s  non-singular with the z-coordinates 

of a11 ground stations equal to zero. Eirs t , i t  i s  necessary to plug fo r  local - 
coordinates: z, = zs = . . . = Z, = 0 in the expression for  A mat r ix  a s  seen in 

Table (1.2-2). Since the equivalence operations do not a l te r  the rank of a 

matrix, it i s  now possible to divide a row pertaining to  jth satell i te by 

Z3  # 0,  for  all j. Fur ther ,  each of the last  th ree  columns will be multiplied 

by -1, Finally, if all  the columns a r e  identified by their  headings in Table 

(1- 2-2),  these fur ther  equivalence operations will be  performed: 

The resulting matr ix,  whose rank i s  the same a s  that of x, i s  denoted a s  ?-? and 

i ts  form i s  shown in Table (1.3-1). 

If only one quad of stations i s  observing, e.g. quad consisting of stations 

1,2,3, i ,  all in a plane, then only "station ill submatrix of ?-? i s  to be considered. 

It is seen that no more  than four columns of this  submatrix a r e  independent. To  

avoid singularity two m o r e  coordinates (out of three: x2, .x3, y3) would have to 

be held fixed. If in addition all the satell i te points fo r  this  quad were  lying in 

one plane parallel  to the plane of ground stations (which could be approximately 

fulfilled in practice when the same satellite i s  observed when passing above the 

ground stations), no m o r e  than three  columns of the submatrix could be indepen- 

dent, The columns a z,, a x3/y3, a y3/y3, a x2/x2 would be all constant. T o  

avoid singularity in this  case  three  m o r e  coordinates (out of four: z, ,  x2, x3, y3) 

would have to  be fixed. An example fo r  avoiding singularity in this  ca se  could 

be holding of nine coordinate fixed such that the stations 1 , 2 , 3  would be com- 





pletely fixed. 

From the above illustrations i t  is  immediately clear  that four 

ground stations lying in a plane and observing only ranges to satellites can 

never form a fundamental network, no matter how many satellite points a r e  

used and what i s  their distribution. The fact that this particular case (four 

ground stations lying in a plane) i s  singular was also shown in r l ] ,  Annex A 

and in [lo], where only six satellite points were considered. 

When more than five ground stations observe ranges to satellites 

the system does not have to be singular even if all the stations lie in a plane 

as being investigated in this section. The singularity when it does occur can 

be conveniently divided into three categories. 

1. Matrix f? is  singular if any block of three consecutive columns 

except the last  one i s  singular (i. e. i ts  rank i s  l e s s  than three in this context). 

Since these blocks a re  mutually orthogonal, this i s  the only way for  matrix f? 
minus the last three columns to be singular. This type of singularity will be 

called singularity A). 

2. Matrix i s  singular if the block consisting of the last  three 

columns i s  singular. This type of singularity will be called singularity B). 

3. M a t r i x x  is singular if all its columns together a r e  linearly 

dependent, in absence of singularity A) o r  B). This singularity, involving the 

last three columns together with the other columns of will be called global 

sinmlarity o r  singularity C) . 

3.31 Singularity A) 

Three column block for  any station ( 4 , 5 , .  . . i) i s  singular, i. e. i ts 

radi is l e s s  than three, if the determinant of any (3  x 3) submatrix of this 

block is equal to zero. Let (XI, Y1, Z,), (X2, Y2, Z,), (X, Y, Z )  denote the 

coordinates of the f i r s t ,  second, and any further satellite point respectively 

observed by a particular ground station, and(x, y, z = 0) the coordinates of 

th i s  ground station. Then for  singularity A) it holds 



1.32 Singularity B) 

1.321 Generd Considerations 

The last three column block in 3 matrix is singular, i. e. its 

X1 - x Y1 - y z, 
x 2 - x  Y 2 - y  Z 2 '  

X - x  Y - y  z 

rank is less than three, if the determinant of any (3 x 3) submatrix of this 

block is equal to zero; a condition, similar to that for singularity A). I-lie~e 

again, such two rows that are  linearly independent in the three column block 

may be held fixed and any row other than these two rows may gradually occu~y 

the third row's positioqthus creating (3 x 3) submatrices. If the dete-rrninants 

= 0 .  

This equation represents a surface of the f i rs t  order in @,Y,  Z ) ,  a plai-se. The 

plane passes through satellites 1 ,2 ,  and the ground station as it  i s  seen by 

plugging the coordinates of the above mentioned points for (X, Y, Z). Obviously, 

any such three column block is always singular if less than three distinct 

satellite points are  observed by any ground station. From the above derivation 

it  follows that such a block may be singular even when more than three satellite 

points are present, namely, when they all lie in one plane. This can be also 

easily illustrated geometrically. Even if all the targets observed by e~!rtaia 

station i and lying in one plane with it  were known, this station could not be 

determined from them. In the linearized from, it  could freely move in the 

direction perpendicular to the plane of the targets. An illustration of this con- 

figuration i s  presented in Figure 1. 

In Appendix 2, Best Fitting Plane, a procedure i s  outlined in order to 

determine effectively how a set of given points is close to a plane, which could 

serve to detect the above singularity. The coordinates of a ground station and 

of respective satellite points a re  used to fit a plane by the least squares method 

to these points; subsequently, an average distance of these points from the 

plane is computed. 



Figure 1 

ILLUSTRATION OF SINGULARITY A): Statson i is in the plane of its 
observed targets. 



computed for  these (3 x 3) submatr ices  a r e  all zeroes ,  then the determinants 

of all (3 x 3) submatr ices  a r e  ze ro  since any row is contained in the row 

space of the chosen two rows and so the row space o r  column space of the 

above three column block i s  two (if a l l  the rows were  multiples of each other 

then the row o r  column space of the block would be one). 

F rom Table (1.3-1) it i s  seen that in the las t  th ree  columns all the rows 

pertaining to one ground station (other than 1 , 2 , 3 )  a r e  the same.  Thus the detey- 

minant of a (3 x 3) submatrix i s  zero  whenever any two rows belonging to  the 

same ground station a r e  used to  form such submatrix. In a network consisting 

of four ground stations in a plane all th ree  rows in any such submatrix are the 

same and in a network consisting of five ground stations in a plane at least  two 

of the three rows in any such submatrix a r e  the same.  Thus not only with 'OUT, 

but also with five ground stations lying in a plane the problem i s  always singular, 

namely singularity B) occurs.  

Having m o r e  than five ground stations, all  in one plane, s ingu la~ i ty  B) 

occurs  only as a special ca se  which will be t reated now. F i r s t ,  one r a w  belong- 

ing to station 4 a n d  one row belonging to station 5 will be chosen to be the 

two fixed rows when forming the (3 x 3) submatr ices  in the las t  three column 

block, whose determinants will be examined. The third row will be  graduallji 

taken as being the row belonging t o  any ground station beyond 4 and 5. Hi the 

determinants of all  such submatr ices  a r e  ze ro  then singularity B) is taking place, 

in which case  it holds that 



where (x, y) a r e  the coordinates of any ground station beyond 4 and 5, the z 

coordinates of all the stations being zero. 

It can be seen that (1.3-2) represents an equation of a second order  

curve in xy plane. The curve passes through the ground stations 1 , 2 , 3 , 4 , 5 ,  

sirlee when plugging fo r  (x,y)  any of ( O , O ) ,  (x2,0), (x,,y,), ( q ,y4 ) ,  ( X 5 , ~ 5 ) ,  

the equation (1.3-2) is  satisfied (in the f i r s t  three cases  the third row of the 

determinant in (1.3-2) contains zeroes and in the last two cases  this row is 

equal to the f i r s t  and second row respectively). 

In the above, the assumption was made that there existed two rows in 

@,3-2) which were linearly independent, taken there a s  the rows correspond- 

ing 'to ground stations 4 and 5. If these two rows happened to be multiples of 

each other, different rows would have to be used, otherwise the determinant 

(1-3-2) would always be zero regardless of the third row and so regardless of 

the rank of the last three column block in x. This i s  fulfilled in most  practical 

cases and so  the following only completes the theoretical discussion. The 

situation with any two rows in this column block being linearly dependent can 

be easily analyzed. If a row in the last  three column block of ?f matrix 

corresponding to any station beyond station 4 i s  linearly dependent on the row 

of station 4, then it  holds simultaneously that 



where (x, y) a re  now the coordinates of any such station. If station 4 Pies on a 

straight line with stations 1 and 2, i. e. , if 

then it is seen that in order to fulfill (1.3-2a) - (1.3-2c), any station beyond 

station 4 must also lie on the same straight line, i. e. , 

must hold(assuming thatno two stations can coincide). This result stipulates 

that all stations with exception of station 3 would have to lie in a straight 

line. Of the other cases with restricted location of station 4, only 

can yield meaningful results in order to satisfy (1.3-2a) - (1.3-2c), namely 

and 

x = x, = x, = 0, anyy 

x = x, = x, = x,, any y. 

These results again indicate that all stations except one lie in a straight line 

(in a specific position). Considering the cases with station 4 in general 

position, i. e. , 

the following situation i s  obtained: (1.3-2a) results in a straight line in 

general position through station 3 and 4, while (1.3-2b) and (1.3-2e) represents 

each a second order curve (with non-zero coefficient for x2), passing through 

stations 1 ,2 ,3 ,  and 4. Both these curves necessarily intersect the above 

straight line at two locations, corresponding to station 3 and station 4. FFI 

(x, y) in such locations the equations (1.3-2a) - (1.3-2c) would be satisfied: 

however, this implies that further stations would coincide with either of 



stations 3, 4, which i s  not true. Therefore, the only further realistic con- 

figuration which would cause linear dependence of any two rows in the last 

three column block of matrix is suchthat each of (1.3-2b) and (1.3-2c) 

represents a straight line coinciding with the above line through stations 3 

and 4. This can hold only if 

x - y  3 = 0, 
Y3 

which indicates that stations 1 ,3 ,  and 4 would have to lie in a straight line 

which would also contain all stations beyond station 4. Station 2 would be 

the only one not lying on this line. Consequently, any two rows in the last 

three column block of ?? matrix would be linearly dependent if and only if 

dl the stations except one lay in a straight line. Clearly, adding one more 

station could not remove singularity B) in such cases, since the above block 

would contain at most two independent rows. Therefore, at least two additional 

stations would be needed. This can be easily interpreted geometrically, since 

by adding one more point to the configuration of a straight line and an isolated 

point, one could not avoid having all the points on one second order curve (in 

this ease degenerated into two lines). Since the cases with all stations except 

one lying in a straight line can be immediately detected by inspection, such 

configurations (leading to only one independent row in the last three column 

block of ??matrix) will be always discarded. Consequently, it  is assumed that 

stat-ion 5 exists such that it  does not lie in a line with all except one of stations 

1,2,3, and 4. 

All real solution (x, y) satisfying (1. 3-2) represent the critical loci 

leading to singularity B). General equation of second degree has the form: 

ax2 + b x y  + cy2 + d x  + e y  + f = 0. (1. 3-3a) 



Denoting 

as the determinant of the "augmented A matrix" according to [4], p. 352, the 

real solutions of (1.3-3a), accordingto [4], p. 353, are presented in 

Table (1.3-2). 

as the determinant of the A matrix presented later in (1.3-5) - (1. 3-5b)$ 

and 

Table (1.3-2) 
Representation of Real Solutions for Second Degree Equations in Two Variables 

intersecting lines 

(1. 3-3e) 

a b/2 d/2 

Et was shown that the stations 1 through 5 determine the second 

degree curve representing the critical l o c i  This curve can be computed, 

drawn, and visual inspection made as to whether all the remaining stations 

lie on (or near) it, in which case the singularity (or near-singularity) I%) 

would occur. This is a more practical procedure than to examine 

(1.3-2) for each station beyond 5 separately. In practical computatioi~s 

J = 0 or  Q = 0 would never occur exactly so that a computer program e m  

be written limited to the determination of an ellipse or  hyperbola; the 

other cases, above all the intersecting or  parallel lines can be detected 

beforehand by visual inspection. 

A = b/2 c e/2 

d/2 e/2 f 



The equation (1.3-2) can be expressed as  

It i s  easily verified that A = B = C = 0 would occur if and only if the f i rs t  

two rows of the determinant in (1.3-2) were linearly dependent, the case which 

was treated separately and discarded. The whole equation can be divided by 

e ,  which i s  non-zero in general, since of the stations 1 ,2 ,3 ,  any one can be 

chosen as the origin of the local coordinate system and any one as determining 

the direction of the x-axis. The coefficients A, By C in the above equation 

are obtained from (1.3-2) as  

c = Y4Ys [ (X4 -3) ( Y s Y 3 )  - ( Y 4 - ~ 3  ) (x5-~3) 1 . (1.3-4c) 

The second order equation (1.3-4) in local coordinates (x,y) can be expressed 

in matrix form as 

where  

with 

and 



with 

while 

Since five distinct points are  sufficient to determine the equation 

of second order curve, A matrix and a vector could be also determined by 

fitting second order curve to stations 1 through 5. This is done in Appendk 3 

and the same expressions as  in (1.3-5b) and (1.3-5d) are  obtained foir A,  a, 

An illustration of singularity B) i s  presented in Figure 2. 

1.322 Computation of Critical Curve. 

Practical computations pertaining to the critical curve are  made in four steps: 

(1) Transformation of the coordinates of all stations and 

satellites from the basic coordinate system to which 

all the points refer  into the local coordinate system. 

(2) Computation of the curve in canonical form. 

(3) Transformation of all the points of interest from the 

canonical to the local coordinate system. 

(4) Transformation of these points from the local to the 

basic coordinate system. With their aid the critical 

curve may be easily drawn and conclusions made as 

to the position of the ground stations with respect to it. 

For the transformation of coordinates set forth in (I), the following 

notations will be introduced: 



Targets generally distributed 
X 

ground stations 

Figure 2 

ILLUSTRATION OF SJNGULARITY B): Stations 1, 2, 3 observe all targets; 
all stations a r e  on a second order curve. 



X = 
rx- . . . coordinates of a point in the basic  coordinate 
-Y -r 

system; thus in par t icular  

r x , 7  
& =  . . . coordinates of the origin of the local 

- Yo i 
coordinate system, 

' x-I x = . . . coordinates of a point in the local 
- Y J  

coordinate system. 

According t o  (A4-5a) through (A4-5c) in Appendix 4, 

where x was identified with X' and P with R, and where 

= r cos a sin a 
I L - s i n a  c o s a  

a being the angle between the x and X axes, measured counterclockwise 

under the assumption that both coordinates sys tems a r e  right handed. 

The origin of the local coordinate system is assumed to coincide with 

station 1 and i ts  x-axis to pas s  through the station 2, giving 

cos  a = (X, - X1) / &, 

and 

sins= (Y1 - Y,) /S,,, 

where 

k?q, = ./(x, - x,), + (Y, - ~ 1 ) ~ .  

The mat r ix  equation (1.3-6) can also be written a s  

rx? - r c o s a  -sins TX-X,7 - 
-Y J -sins c o s a  , -Y-Yli '  

determining local coordinates of any point given in the basic  coordinate 



system (here capital letters denote stations' coordinates) . 
Computation of the critical curve in canonical form, such as  stipulated 

in (3% comprises computation of the parameters of this curve, its explicit 

equation in the local coordinate system being given by (1.3-5), namely, 

This form coincides with (A4-30) of Appendix 4 with c = 0, due to the fact 

that the critical curve passes through the origin of the local coordinate 

syst'ern (station 1). The procedure to compute the size, shape, center, 

and orientation of this curve was outlined in section A4.4 and also used in 

practical computations. (The local coordinate systemis called in section A4.4 

"original coordinate system". ) In particular, the semi-axes al, %, and 

the kind of second order curve, found there, determine the size and shape 

of the critical curve, while x, and R determine the center and orientation 

of the critical curve with respect to the local coordinate system. Assurnp- 

tions made in section A4.4 excluded special cases when singularity B) is 

caused by all stations lying on two straight lines (intersecting o r  parallel); 

these assumptions read as J # 0 and A # 0, with J and A defined in (1.3-3b) 

and (1.3-3c). Some of the special cases were illustrated separately in 

Appendix 5. 

The values of x, and R a re  then used to transform any point on the 

c r~ t i c a l  curve from the canonical to the local coordinate system, as  required 

by (3). In particular, the points of interest a re  the center of the curve 

and four "main curve points", identified with the end points of the curve's 

axes (major and minor axes for  ellipse and transverse and conjugate axes 

fo r  hyperbola). In section A4.4, these points in canonical coordinates 

are presented in (A4-32). Their transformation into the local coordinate 

system is  made according to  (A4-8) as 

X = Xg + RY' 



where x' re fers  to a coordinate vector in the canonical coordinate sysitern. 

Transformation of these (and any other) points from the local to the 

basic coordinate system set forth in (4) i s  then carr ied out according to 

(A4-5a) o r  (1.3-6), a s  

X = &  + Px.  

1.33 Singularity C) 

When dealing with singularity C) in a range adjustment problem, also 

called global singularity, all of the columns in 2 matrix (presented in Table 

(1.3-I), section 1.3) a r e  taken into consideration. In the global analysis of the 

causes leading to singularity (in this context rank deficiency) of f? matrix? 

it  will have to be assumed that no three column block is singular. Failure to 

fulfill this condition can be divided into two groups: f i r s t ,  in which anyone of 

the three column blocks except the last  one i s  singular, in section 1.31 

called singularity A), and second, in which the last  three column block i s  

singular, in section 1.32 called singularity B). Naturally, these two groups 

have to be treated separately in order  to make the analysis of the global 

singularity complete. It  was done in sections 1. 31 and 1. 32, although the above 

reason for  such separate treatments was not given there. Elimination of sin- 

gularity A) and singularity B) a re  necessary conditions for  matrix t o  be 

non-singular. Further necessary conditions a r e  presented in section 1.331, 

1.331 Necessary Conditions to  Avoid Singularity C). 

As seenfrom Table (1.3-I), among all the rows pertaining to observations from 

one ground station inmatrix A, at  most four rows canbe linearly independent, First7 

the condition guaranteeing that such a row block has indeed rank four will be formuhted,  

Obviously, only one non-zero column of the last  three column block (or  one 

non-zero combination of the three columns) is to be considered here,  siiaee two 



of thesle Columns can always be brought to zero by equivalence operations. Con- 

sequently, the rank of the following matrix NL,, corresponding to the kth row block, 

wi l l  be considered: 

where e i s  a constant and 

Using row and column equivalence operations it i s  seen that 

ILL holds that rank 112, = 4 if and only if rank S, = 3. The f i rs t  two rows in S, 

are gssumed independent (they would be dependent only if the satellite points 

1, 2 ,  3 were lying on a straight line; in this case another row could replace 

W o ;  if no such row existed then all the satellite points observed by station 

k would lie on a straight line, rank S, would be one and rank NL, two; but then 

singularity A) would occur contrary to the necessary assumptions of singularity 

A) m d  singularity B) eliminated). Let X, Y, Z denote coordinates of any satellite 

point beyond three observed from the k th ground station. Should the rank % 

be less than three i t  would have to hold for each such satellite point: 



This f i rs t  degree equation in X, Y, Z represents a plane passing through points 

X,, Y,, Z,, i = 1, 2, 3, i. e. passing through satellite points 1 ,  2, 3 (if a n ~ s  

of these Xi, Y,, Z, are plugged for X, Y, Z ,  the equation (1. 3-7) i s  satisfied), 

Consequently, the rank of S, is less than three and the rank of NL, i s  less khan 

four if all the satellite points observed from the kth ground station lie in one ~ l m e ,  

Each observing station beyond stations 1 , 2 , 3  colilributes with three 

columns to matrix g. These three columns are  assumed to be independent (due 

to singularity A) eliminated). Thus each row block has rank at least three and 

at most four. Since ?? matrix contains three more columns (the last thiree 

columns) corresponding to stations 1 , 2 , 3  (actually only 2 and 3), there must 

be at least three such row blocks of rank four in order that be not necessarily 

singular. Otherwise ranks of individual row blocks added together would not 

even reach the number of columns in ??. Thus, a further necessary condition for 

?? to be non-singular i s  that at least three row blocks have rank four. Defining 

a set of points which a r e  not all lying in one plane as  points "off-plane", the 

above conclusion may be restated a s  follows: in addition to the assumptions of 

singularity A) and singularity B) eliminated a further necessary condition for 

to be non-singular stipulates that a t  least three ground stations in additlor to 

stations 1 , 2 , 3  must observe off-plane targets. 

1 .332 Necessary and Sufficient Conditions to Avoid Singularity C). 

In section 1.331, the necessary conditions for avoiding singularity C) 

were presented. It will be shown that with some further specifications these 

are also the necessary and sufficient conditions for non-singular matrix, 

Let the following notations be introduced pertaining to ?? matrix of Table 



(1,3-1): the columns with headings a%, ay,, az, will be denoted respectively 

as (column) vectors v,X, v z, v,Z, k = 4, 5, . . . , g. The letter s will re fer  

to '&the number of ground stations beyond station 3, while g will stand for  the 

total %-umber of ground stations, namely, 

g = s + 3 .  

The last three (column) vectors will be denoted as  $, v2, v3, respectively. 

The condition for  singularity of can be expressed as  follows: i s  singular 

if there exists a set  of coefficients,divided into a group containing coefficients 

a and a group containing coefficients b, such that this se t  i s  not necessarily 

a zero set  and that the relation 

holds,, i. e., that (1.3-9) i s  consistent for  this set of coefficients. Obviously, 

the above system of homogeneous equations can always be made consistent, 

namely, when all these coefficients a r e  equal to zero. Thus i s  singular if 

(1,3-'9) can be made consistent with some non-zero coefficients a o r  b. Other- 

wise ?? i s  non-singular. It i s  seen from Table (1.3-1) that can be divided 

into s sow blocks, associated with observations from station k, k = 4, 5, . . . , g. 

Wi th  exception of the last  three columns, the non-zero columns in the k th row 

block wil l  be denoted a s  2, y:, and 7;. Clearly, these (column) vectors repre- 

sent the only non-zero elements in v,X, v;, and v,Z (column) vectors, respectively. 

Furthermore, the last three columns in this row block can be denoted a s  

where  G', fz,  k3 a r e  t e rms  appearing in each row of the last three columns of 

?f for this row block. The system of equations (1.3-9) i s  thus composed of 

smaller systems, corresponding to the above row blocks, which all have only 



the b-coefficients in common; (L 3-9) then corresponds to the totality of the 

systems such as  - 
I11 r11 ill 

where 

bf," + &ff,2 + b&,3 = c,. 

Consequently, the system of homogenous equations (1.3-9) can be written as 

composed of the systems (1.3-lOa), with k and ck  such as  in (1.3-10b) and 

(1.3-lOc), respectively. It has the following form: 

where 

bf:+b&+ b& = c,. 



Necessarily, the system of homogeneous equations (1.3-9) i s  consistent for  some 

set of tcoefficients a, b, if and only if the systems (1.3-11) and (1.3-12) a r e  con- 

sistent for  the same set of coefficients. If for  any k in (1.3-10a) o r  (1. 3-11) - - - 
IT:, v,Y, and v: were not linearly independent, then there would exist correspond- 

ing a-coefficients not all three equal to zero such that 

would hold. Accordingly, with all the remaining a-coefficients and all three 

b-coefficients equal to zero, o r  correspondingly with all the t e rms  c equal to 

zero, the systems (1.3-11) and (1.3-12) would be consistent for  such a non- 

zero set  of coefficients and would be singular. However, these special con- 

ditions a re  assumed to  be non-existent due to the necessary conditions regard- 

ing singularity A). It then follows from (1.3-10a) and (1.3-lob) that 

= akY = a< = 0 if and only if c k  = 0 (1.3-14) 

in ordter that (1.3-11) be consistent. ~ h u s ,  c k  = 0 fo r  any k will guarantee that 

all three corresponding a-coefficients a r e  equal to zero. However, even if 

.;his were the only possibility to make the system (1.3-11) consistent, would 

not be necessarily non-singular; namely, if the last  tnree columns of x were 

linearly dependent, then 4, b,, b3 not all zero  would exist such that the system 

(1,3-12) with the te rms 

- c 4 =  c g =  ... - c , = O  (1. 3-15) 

iiridsuld be consistent. Then (1.3-9) would be fulfilled with not all the coefficients 

equal to zero (namely the coefficients b would be different from zero) and x 
would be singular. However, due to the necessary conditions with respect to  

singularity B) it holds for  dl k's  that 

b, = b, = b3 = 0 if and only if 



in order that (1. 3-12) be consistent. With the causes leading to singularity A) 

and singularity B) eliminated as the necessary conditions for non-singular 

matrix, the follo\ving definition can be formulated using (1.3-14) and (I,, 3-16): 

% matrix i s  non-singular if and only if the only c-terms making both (4.3-11) 

and (1.3-12) consistent are these of (1.3-15). Othierwise i s  singular, 

As a natural consequence of the above definition, the c-terms which make 

(1.3-11) and (1.3-12) consistent will be analyzed. For any subset of (1, 3-11), 

such as (1.3-10a) associated with the observations from station k, it holds that 

whenever 

rank r?:,T;,I;k., 

then only the trivial solution, i, e. 

i s  possible. Otherwise an infinite number of solutions exists, including the one 

of (1.3-17b). The expression (1.3-17a) i s  true whenever 

rank M, = 4 (1, %--lac)  

where M, i s  given by (1.3-7), since the matrix of (1.3-17a) is  exactly M, 

with 

c = 1 + 0 ,  

in accordance with (1.3-7a). The relation (1.3-17c) holds if and only if the @or- 

responding station k observed off-plane targets. Next, the system (1.3-12) wi l l  

be written in matrix form as 

where 



Should (1.3-12) represent a consistent system of equations, it must hold that 

rank [F  C :! = rank F = 3, (1. 3-18) 

since singularity B) was discarded. Thus the rows of [F  C ] span a three-dimen- 

sional subspace W of V, where V is  the space of all 4-vectors. Due to (1.3-18), 

"three independent rows of F may be found; the same three rows of [F  C 1 
s p a  FV. Finding three independent rows of F i s  equivalent to finding three 

stations beyond station 3 which do not all lie on a second order curve together 

with stations 1 ,  2, 3. This may be seen from (1.3-2) where the three rows 

inside the determinant, equivalent to the above three rows of F, are independent 

only if the corresponding stations do not lie on a second order curve with stations 

I,%, 3 ,  Three o r  more stations with this property will be said to be off-curve, 

o r  eqaiivalently, it will be stated that singularity B) was removed for these 

particular stations. Otherwise the stations will be said to be on-curve. Since 

the above three rows of [F  C ] span W,  then all the elements of C, or  all the 

c-temns in (1.5-12),will be necessarily zero if the c-terms in all these three 

rows are zero (all c-terms are  linear combina.tior~s of the above three c-terms 

corresponding to three off-curve stations). But these three c-terms will have 

to be zero with no other soiution possible only if (1.3-17a) holds for the cor- 

responding stations, which occurs only when these stations observe the satel- 

like points which are off-plane, as  i t  can be seen from the pertinent conclusion 

in section 1.331. Under such conditions, leading to all c-terms beirig zero, the 

relations (1.3-14) and (1.3-16) imply that all a-terms arid b-terms must be 

zero should (1.3-11) and (1.3-12) be consistent. Consequently, these condi- 

tions stating that at least three off-curve stations observe off-plane targets 



imply that is non-singular, provided singularity A) i s  discarded, and with 

this last statement represent the necessary and sufficient conditions for non- 

singular matrix. 

The requirement that the above three or  more stations be off-curve neees- 

sarily implies that singularity B) cannot exist. As a matter of fact, it represents 

a stronger statement, which was conveniently worded as  eliminating singularijy 

Br for these particular stations. On the other hand, if such three or  more 

stations did not lie off-curve, or  if only two stations (they can never lie off- 

curve) observed off-plane targets, then the corresponding rows of [FC] wouid 

not span W. This means that when only on-curve stations observed satellite 

points which were off-plane, not all the c-terms would have to be zero to  m&e 

(1.3-12) consistent. Only those c-terms would have to be zero, whose rows 

would be linear combinations of the above rows, i. e., all the c-terms correspond- 

ing to on-curve stations. For instance, suppose that the f i r s t  two rows of (1-3-12) 

are  independent with c, = c5 = 0 as the only possibility and suppose that no further 

c-term has this property. Choosing a third independent row, corresponding 

now to an off-curve station (which did not observe off-plane targets) and ehoos- 

ing i ts  c-terms different from zero, a unique non-trivial solution for b., b,, m d  

b, can be obtained. This will yield uniquely the other c-terms from (1, 3-12); 

i t  i s  clear that not all c-terms are eero, while the system (1.3-12) i s  con- 

sistent. The non-zero c-terms are  exactly those associated with stations off- 

curve. The fact that singularity B) for all the stations was discarded did not 

help here, since the stations observing off-plane satellites were not themselves 

off-curve stations. Furthermore, when the c-terms, different from zero (and 

necessarily corresponding to the stations which did not make off-plane observa- 

tions) are used in (1.3-ll), a unique non-zero solution can be found for the 2- 

coefficients in a subsystem of (1.3-ll),  such as (1.3-lOa), corresponding to  

any of these c-terms. This i s  true because for such a subsystem the relation 

(1.3-17a) does not hold: the rank of a matrix such a s  presented in (1.3- baa) 



with. the last  column present cannot be four since the corresponding station did 

:lot make off-plane observations. On the other hand the rank of the same matrix 

w i ~ o u t  the last column i s  three due to the fact that singularity A) was discarded. 

Consequently, the rank of this matrix i s  three, the same as the rank of this 

matrix augmented by a non-zero constant column , which guarantees a unique El 
non-zero solution for the three a-coefficients of the subsystem. 

In conclusion, necessary and sufficient conditions for  ?? matrix to be non- 

singular will be restated: matrix is non- singular if singularity A) does not 

occur and if there exist off-curve stations (necessarily at least three) making 

sff-plane observations. Otherwise x is singular; in absence of singularity A) 

m d  singularity B) the singularity of x was defined as  being singularity C). I t  

occurs when the stations making off-plane observations are  not themselves 

off-curve stations. Singularity C) is illustrated in Figure 3. 

1,333 Illustration that Discarding of Singularity A) and Singularity C) Yields 
Unique Solution in Adjustment. 

First  of all, singularity B) is discarded whenever singularity C) is 

eliminated as  pointed out in section 1.332, since this implies that there 

exist some stations off-curve and,therefore, all the stations a re  necessarily 

off-curve. Further, the number of observations will be shown to be at  least 

as large as the number of unknowns in an adjustment. Stations 1, 2, 3 a r e  

ail-viiays assumed to observe all the satellite points. Due to the removal of 

s inplar i ty  C), there a re  at least three more stations observing at  least four 

satellite points each (less than four satellite points could always form a plane). 

Due to the removal of singularity A),  all the remaining stations observe at 

least three satellite points each (less than three satellite points could always 

lie in a plane with the observing station). 

Suppose there a re  g ground stations, of which three observe all the satellite 

points and three observe at least four satellite points each, thus making at 

least twelve observations. Further, suppose there are  s satellite points. The 
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ILLUSTRATION OF SINGULARITY C): Stations 1, 2, 3 observe all targets; 
all  stations observing off-plane targets a r e  on a second order curve with 
stations 1, 2 ,  3 .  



nmbe . r  of unknowns in the whole system (three per stations or  satellite point, 

minus six unknowns representing constraints or  removed parameters) is equal to 

The number of observations in the whole system is  composed of the following 

groups: 

3 s . . . due to stations 1,  2, 3 observing all satellite points 

at least 12  . . . due to three further stations observing at least four 

satellite points each 

and 

at least (g-6)3 . . . due to the res t  of stations observing at least three 

satellite points each. 

The total of all the observations i s  then at least 

which i s  as  many as  there are unknown parameters; this proves the asserted 

statement. 

Whenever the words "at least" do not apply, the system has exactly the 

s m e  number of unknowns as  there a re  observations and a unique solution is 

possible without an adjustment. 

18. is clear that if singularity A) and singularity C) (consequently also singu- 

Ilarity ST)) are  discarded for a network of six ground stations, the network will 

be non-singular no matter how many ground stations and corresponding satellites 

are added to it, provided that singularity A) i s  eliminated also for each of those 

new stations. This follows from the fact that all the c-terms are zeroes (i. e. , 

d s o  those corresponding to the new stations since all the b-terms were zeroes) 

md that the a-terms for the new stations must then also be zeroes due to (1.3-14). 

It can be easily visualized in the following way: in a well-determined network 

of six ground stations, any number of satellites not lying in the plane of the 

ground stations can be determined using observations from any three stations 

4 2 



(here 1,2,3). Any new station, co-observing these satellites, can be determined 

from them, provided it  does not lie in one plane with them. But this col~dition is 

exactly that of singularity A) eliminated (for any such new station), which i s  there- 

fore a necessary and sufficient condition for expanding of non-singular range net- 

works beyond the non-singular networks of six ground stations. 

1.34 Critical Configurations if All Ground Stations Co-observe. 

When all stations observe all targets, any three stations can be eoi~sidered 

to be stations 1 ,2 ,  and 3, used in previous derivations. For this reason 

singularity A) loses its original meaning: if all the targets lie in a plane 

through a certain ground station, then such a station can be taken for instance 

a s  station 1;  with such numbering of stations singularity A) does not occur, 

This can be seen from section 1.31 where it was shown that singularity A)  

occurs if all satellite points observed by a particular ground station beyond 

stations 1 ,2 ,3 ,  lie in a plane containing that ground station; if it contains 

any of stations 1 ,2 ,3 ,  instead, singularity A) does not occur. Nevertheless, 

the above configuration results in a singular network, since it is  a special 

case of singularity C) described below. 

Singularity A) could occur in one case only, namely if all targets lay in 

a straight line. Planes through such targets would contain any ground station, 

This, however, i s  also a special case of singularity C) described below. 

When all stations co-observe, singularity C) could occur only in two 

instances as  follows: 

(a) If the targets are  not all lying in one plane, all stations 

would have to be on one second order curve in order 

that singularity C) occur. This cooresponds to singularity 13) 

of section 1. 32. 

(b) Ifthe stations are  not all lying on one second order curve, 

all targets would have to be in one plane for singularity C) 



to occur. The distribution of targets in this plane i s  

irrelevant. As a special case, such a plane would pass 

through a certain station. When all targets lie in a straight 

line, which i s  another special case, this type of singularity 

always occurs. 

Illustrations of singularity C) for parts (a) and (b) appear in Figures 4 and 5, 

respectively. 
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Figure 4 

ILLUSTRATION OF SINGULARITY C): All stations observe all targets; 
all stations a r e  on a second order curve. 



stations 

Figure 5 

ILLUSTRATION OF SINGULARITY C): All stations observe all targets; 
all targets a r e  in a plane. 



1.4 Principle of Replacing of Stations 

In the last sections at least three ground stations were treated as observ~ng 

distances to all the satellite points. All the derivations presented there are 

naturally valid when all the ground stations in a network observe all the targets 

(in this sense llobservell means strictly "observe distances"). This would be 

an ideal way of observing range networks, based on simultaneous o r  quasi- 

simultaneous observations from all o r  most of the ground stations. The latter 

mode of quasi-simultaneous ranges would involve precise timing and such an 

interpolation procedure as  to yield simultaneous observations for  the range 

adjustment. When such an observational mode realizes, the analysis treating 

three ground stations as observing all the targets will then be sufficient and 

complete. However, the data presently available i s  not of this nature. A great 

number of range observations have been made using the SECOR observationd. 

mode, when only four ground stations are  observing simultaneously. Even in 

this case it would be possible to have three stations observing all the targets, 

while the fourth station would be moving. In practice, however, even if networks 

extend to relatively small areas,  all the stations a r e  gradually displaced and 

occupy new positions in a fashion called "leapfrogging". If this is the case, 

no three stations observe all the satellite points in general. I t  i s  then of 

interest to analyse the critical configurations for  this new procedure in a way 

similar to that used in the previous sections. 

To procede with such an analysis as clearly as  possible certain notations 

fo r  groups of satellite points will be introduced. The ground stations (considered 

again as lying all in one plane) will be grouped by four, which corresponds to 

"quads" arising when the SECOR observations a r e  used. Any satellite group wi l l  

be represented by the letter j subscripted by the number (or  letter) of a ground 

station which does not appear in any other quad o r  which observes this group for 

the f i r s t  time. Thus the quads consisting of ground stations 1 ,2 ,3 ,4 ,  then I,%, 

3 ,  k, and 1 , 2 ,  k, s a r e  said to observe satellite groups j,, j,, and j, respectively, 



Each station of one quad i s  assumed to observe each satellite in the correspond- 

ing group. Theoretically, some o r  all of the satellite groups could coincide, 

i, e ,  , contain the same targets, which would happen if more than four stations 

could make simultaneous observations. This would not affect the derivations 

at dl, since the coordinates of all the targets are  eliminated and expressed in 

t e rns  of the observing stations. In the above illustration, station k effectively 

replaced station 3 in the observations of j,, which were thus made from stations 

1,2, k9 md s. This is  the reason why such a procedure is referred to as "replac- 

ing of s t  a t  i on  s ". Station k will be considered throughout as performing the 

first replacement. The stations following station k will be all denoted as "s- 

stations" even if their number i s  more  than one, in which case they will be 

distinpished by primes: sf, 4 etc. The corresponding satellite groups will be 

then j j j,", etc. 

Reiplacing of stations will be carried out on three levels, according 

tc the number of replacements. One replacement will be analyzed in section 1.41, 

which will be the most detailed of the sections dealing with replacements; two 

replacements will be treated in section 1.42, and more replacements in section 

1 -43 ,  

When dealing with one replacement, the observing stations (quads) and the 

corresponding satellite groups can be conveniently arranged in the following way: 

where the dots express the possibility of more quads present with the f i rs t  three 

stations; the same as in the preceding quad. Thus, one or  more quads "i" could 

be introduced between the quads of station 4 and station k, namely: 



When two replacements a r e  taking place, then one s-station replaces station 2 

in addition to station 3 having been replaced by station k. This s-station wi l l  be 

denoted as s'. A similar pattern will arise in this case: 

where the dots have the same interpretation as  in the previous part. Further 

replacements can be carried out in an analogous manner. 

1.41 One Replacement: Station 3 Replaced by Station k. 

Up to and including station k, the elimination of the parameters ax, a ~ ,  az, 
associated with the satellite points can be done in the same manner as  presented 

in section 1.2. With the same definition of the coordinate system, the p a r m e t e r s  

for  each target in j, through jk can be eliminated using observations from stations 

1 ,2 ,3 ,  which lead to the equations (1.2-6a) - (1.2-6c) in section 1.2. These 

three equations after multiplying each of them by sf j  (distance ground-satellite) 

can be expressed in a matrix form as  

where j stands for any satellite point of j, through j,. The solution using the 

matrices i s  equivalent to that presented in section 1 .2  and gives axj, a Y J ,  and 

aZ, such as  found in (1.2-7b), (1.2-7c), and (1. 2-7af). The determinant of the 

(3 x 3) matrix in (1.4-1) can be expressed as D = Zjxa3,  giving raise to 'the eon- 

ditions 



already discussed in section 1 .2 .  When the results  for  ax , ,  aY, , aZ, a r e  

substituted for  in (1.2-4a) associated with the observations from "i-stations" 

gi can be any station between 4 and k inclusively), then the equation (1.2-9) is  - 
obtained. Equations of this type were used to form A matrix, presented in 

Table (1.2-2). 

Elimination of the parameters  associated with the satellite group(s) j, will 

be done using stations 1 , 2 ,  k, co-observing with station(s) s. The observations 

from stations 1 and2 lead to the same two equations for  j, a s  expressed in the 

f i r s t  two lines of (1.4-1). For  the observations from station k it holds similarly 

that 

(xj;%)(axj ,a&) + (YJ ;yk)(aYj ;ayk) + (ZJ ;zk)(azj ;a %) = 0.  

Tn the matrix form the three equations can be written a s  

The determinant of the (3 x 3) matrix in the above expression is given by 

which is the same a s  

This form can be obtained also upon using the equivalence operations on the 

matrix in (1.4-3). If the determinant in (1.4-5) i s  equal to zero, then stations 1 ,  

2 ,  k ,  and the point(s) of j,, with the coordinates (XJ ,, Yg s, ZJ J ,  all lie in a plane. 

Consequently, the condition for  (1.4-3) to have a unique solution for  axj ,, aYj S, 

a Z j B  with respect to any target in j, is  that none of the points in j, l ies in a plane 



with stations 1 ,2 ,  and k. The solution of (1.4-3) with ground stations in genersl 

configuration (not necessarily in one plane) is: 

When these values are  substituted in the equation for  observations from statio2(s) 

s ,  i. e . ,  in 

then the following expression i s  obtained: 

Using equations of the type (1.2-9) fo r  i-stations and of the type (1.4-7) for s- 

station(s), matrix for  one replacement with the ground stations generally dis- 

tributed can be obtained, such a s  presented in Table (1.4-1). If there are more 

than one s-station, the table can be easily expanded, using the same type of 

t e rms  for  any further s-stations; for  each such additional station three colun:ns 

and a s  many rows a s  the number of targets observed by it would have to be 

added. The dots in each row block of Table (1.4-1) and any further table indicate 

that the same rows figure in the whole row block with the targets '  coordinates 

a s  the only changing elements in them; if there a r e  any columns in which these 

coordinates do not figure, then in such columns the elements do not change within 

the same row block. 
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When dealing with ground stations which a re  all lying in one plane, the - 
z-coordinate for  any station i s  set to zero and A matrix becomes considerably 

simplified. Its determinant then becomes, upon considering (1.4-3): 

which means that in addition to the conditions in (1.4-2), 

Yk f 0,  ZJ ,  f 0 (I. 4-81 

also has to hold. Since it i s  the rank of which is of interest a s  it was also the  

case in the previous sections, certain equivalence operations will be performed 

to further simplify matrix. If there were more  than one s-station, they would 

be treated the same way (e. g., ax, -+ a s  +& ax, would become 8% -+ ax, + 
Yk 

+& ax,' += ax, + ... , etc.). The equivalence operations with respect to 
Yk Yk 

matrix of Table (1.4-19 a re  the following: 

(1) Divide each row by the corresponding ZJ # 0. 

(2) Multiply each of the Bast three columns by -I ,  

43) Pssf'om on the three co8umn block of station k: 

(4) Perform on the last  three column block: 

%+% --(4-Y43) axs ... --(%-yka, ax, -"Xs-XYk ax,. 
x2 x2 Y3  Y 3 Yk 

(5) Divide each of the rows "From s" by yk # 0. 

(6) Perform further on the last  column: 

The matrix thus obtained is called ?? matrix with one replacement and with 

ground stations lying in one plane; i t  i s  presented in Table (1.4-2). There appear 

two s-stations in this table, denoted as  s' and s". A t  this point some notations 





will be introduced in accordance with the previous sections; they will mainly 

consist of the f-terms from the last three column block of matrix and some 

new te rms  (p-terms), arising from the presence of s' and s stations: 

In the analysis of the rank of matr ix the necessary conditions for  ?? to be 

non-singular will be presented f irs t .  The above notations and ear l ie r  notations 

from section 1.332 will be used in a s imilar  approach a s  in that section. This 

means that when all the a-coefficients and b-coefficients have to be zero in 

order  that the systems associated with ?f matrix and denoted as (1.4-11) and 

(1.4-lla) be consistent, then will be said to be non-singular. These two 

systems a r e  presented in Table (1.4-3). The systems (1.4-11) and (1 .4 - l l a )  

can be also imagined in a matrix form which is  helpful for  certain rank eonsider- 

ations. When the a-terms and c-terms a r e  arranged in a column vector, then 

the system (1.4-11) i s  arrived at by pre-multiplying of this vector by what is 

said to be the "matrix of the system (1.4-l l )" ,  o r  the "matrix of (1.4-11)". 

Similarly, with the b-terms arranged in a column vector, the "matrix of (I. 4-11 a)" 

will have the form 





For  stations 4 through k, the corresponding rows in F have the same form 

a s  the same rows in the last three column block of matrix with three stations 

observing all the targets (presented in Table (1.3-I)), except that to the third 

column the -multiple of the f i r s t  column has been added. Therefore, a row 
Y3 

corresponding to any station beyond station 4 up to and including station k 

would be linearly dependent on the row of station 4 under exactly the same con- 

ditions a s  presented in section 1.321, namely, if that station lay in a straight 

line with all except one of stations 1 , 2 , 3 ,  and 4. When the c-terms from 

(1.4-lla) a re  substituted into (1.4-11) this system now contains the 

full set of a-terms and b-terms and wil be called "full system of 

(1.4-ll)",  o r  "full system". I ts  corresponding matrix is exactly ?? matrix. 

However, it i s  eas ier  to work with ?? matrix with the notations of (1.4-11) and 

(1.4-l la) ,  i. e . ,  in t e rms  of the full system, taking advantage of the abbreviated 

notations. In this context it will be preferable to call matr ix a s  "full matrsx7' 

associated with the full system. The necessary conditions for  the full matrix to 

be non-singular will be divided into two principle groups: one dealing with its 

rwo blocks and called "row conditions", and the other dealing with its three 

column blocks and called "column conditions". The lat ter  group will be sub- 

divided into two parts: conditions necessary to prevent signularity of any of the 

three column blocks except the last one, i. e., to prevent singularity A),  and 

conditions necessary to prevent singularity of the last  three column block, i ,  e , ,  

to prevent singularity B). With all the notations and definitions introduced, the 

above necessary conditions can be systematically investigated. 

When the row conditions a r e  to be examined, it has to be taken into eon- 



sideration that no row block in the matrix of (1.4-11) can have higher rank than 

four, Assuming that each row block there has the rank equal to at least three, 

it is clear that at least three row blocks in the matrix of (1.4-11) o r  in the full 

matrix have to have the rank equal to four. Otherwise the sum of the row ranks 

would not even reach the number of columns in the full matrix, since each row 

biock introduces three new columns in the left-hand part  of matrix which does 

not include the last three column block (in (1.4-11) this part  and the last three 

column block a re  separated by a vertical dotted line). In other words, the row 

conditions imply that at least three quads must observe their targets off-plane 

when t h e  terminology of section 1.332 i s  used and when the expression (1.3-17a) 

with the text below it in the same section is considered. 

When analyzing the column conditions, singularity A) will be examined first.  

Upon considering matrix of Table (1.4-I), it i s  clear that singularity A) 

occurs for  any distribution of ground stations whenever it holds that 

where (&,%,&) and (X2, Y2, Z,) a r e  taken a s  denoting the f i rs t  two targets in h ;  

(X,Y,  Z) denotes any further target in j, o r  any target in j,. The above equation 

expresses any point (X, Y, Z )  as  lying in the plane through the f i r s t  two targets 

in g and station k. This result indicates that singularity A) occurs whenever all 

the targets (in one satellite group o r  more) observed by one station lie in the 

pime containing this station regardless of the distribution of ground stations. 

Singularity A) caused by such a distribution of targets will be sometimes referred 

to as "general singularity A)". Next, ground stations are  assumed to be in the 

plane z = 0. 

Considering thematrix of (1.4-ll), it is evident that singularity A) for any 



station except station k occurs under the circumstances specified in section 1.31, 

i. e., when all the satellite points in any of j, (except jk) o r  j, lie in a plarie through 

corresponding stations i o r  s. Singularity A) for  the three column block of 

station k can happen only if, in addition to all satellite points of j, lying in one 

plane through, in such case called "plane nl'(which expresses the condition 

(1.3-1) in section 1.31), the following relation also holds: 

Here (XI, Y1, Z1) and (X,, Y2, Z2)denote again the coordinates of the f irs t two targets  in 

j,, namely hl and jk2. In the present case, (1.4-13) would hold with the third raw 

pertaining to either s' o r  s. When the coordinates of s' o r  s" a r e  denoted as 

variables x and y (the z coordinate being zero), then (1.4-13) holds when either 

i s  fulfilled. The equation (1.4-13b) expresses the fact that the variable point 

(x ,y ,z)  lies in a plane with the points a, ,  h2, and k, subject to the condition 

z = z, = 0 .  But this implies that the corresponding station s' o r  s lies on a 

straight line denoted by the let ter  "8",which i s  generated by two intersecting planes: 

plane T and the plane of ground stations (i, e., plane z = 0). It will be of in terest  to 

compute the direction of the line & , passing necessarily through station k. From 

the general equation of a straight line, 

a x + b y + c = O ,  



its direction, given by the angle cr (measured from the positive direction of the 

x-axis), can be computed from the formula 

Thus, if 

a, = x, (Z2 - Z1) + Z1 X2 - Xl Z2 

and 

a, =y,(Zz - Z1) + z1y2 - YlZ2, 

then (1,4-13b) can be written as  

from which 

1% can be summarized that singularity A) for  station k can occur only if all satellite 

points observed by it (here targets of 5, and j,) a re  in T (plane through station k), 

called also general singxlarity A), o r  if all targets of & are  in T and each of the 

s-stations i s  fulfilling either (1.4-13a) o r  (1.4-13b), i. e . ,  if it i s  lying either on 

the x-axis of the local coordinate system (line connecting stations 1 and 2) o r  

on 4 (line of intersection between TT and the plane of ground stations). 

Singularity B) arises when any (3 x 3) submatrix of F, given by (1.4-12), 

is singular. Then any row vector in that matrix would have to be a linear com- 

bination of its two chosen vectors (here the vectors corresponding to stations 4 

and k) ,  i. e . ,  it would have to lie in the subspace V2 spanned by those two row 

vectors: 



The two rows which span V2 are  assumed to be independent. This i s  always 

true unless station k i s  in a straight line with all except one of stations :1,2,3, 

and 4, a s  it  was evidenced following (1.4-12). Such special configurations are 

assumed non-existent. Thus, for  any station i it  would have to hold that 

which represents a second order curve for  station i (i,  e., in xi ,  yi). This  curve 

sses, can in general be specified also by finding five points through which it pa, 

As it is evident from the relations in (1.4-9), 

f: = f: - ff = 0, whenever i -1 ,2 ,  o r  3; (1, 4-16a) 

further,  

and 

From here it is  evident that the second order curve for  station i, expressed 5y 

(1.4-16), would have to pass through the stations 1 , 2 , 3 , 4 ,  k. This can also be 

seen from section 1.32 where station 5 was used rather  than station k. Further,  

for  any station s it would have to hold that 

which now represents a second order curve for  station(s) s (in the present ease 

it would have to hold for  stations s' and s). With the simplifications 

[f: f: f,3] = f,, e tc . ,  



it again follows from (1.4-9) that 

further,  

f, = 0, whenever s r 1 ,2 ,  k;  

f, = a&, a = -& if s r 3, 
Yk 

Thus the second order curve for station(s) s ,  expressed by (1.4-17), also passes 

through stations 1 ,2 ,3 ,4 ,  k. Whether considering (1.4-16) o r  (1.4-17), the co- 

efficients in the equation of second degree never all vanished; this would happen 

if md only if V, of (1.4-15) were of dimension one, similar to section 1.321. 

However, such cases were assumed non-existent, a s  mentioned following (1,4- 15), 

Oonsequently, singularity B) occurs when all the stations lie on one second order 

curve, which i s  the same conclusion as  the one reached in section 1.32 when three 

grsmd stations were considered to be observing all the targets. A similar definition 

as in section 1.332 can be made now: any stations lying on a second order curve 

passing through stations 1,2,3,4,  k a re  said to be "on-curve" stations, while 

otherwise they are  called "off-curve" stations. 

According to the earl ier  sections, when $? matrix is singular in absence of 

s inplar i ty  A) and singularity B), then singularity C) i s  said to have occurred. 

The necessary conditions to avoid singularity C) a re  the row conditions described 

earlier.  They correspond to the necessary conditions of section 1.331 with 

three stations considered observing all the targets. Next, the sufficient condi - 

tions to avoid singularity C) (or global singularity) will be examined. Subsequently, 

the conclusions about singularity and non-singularity of 2 matrix will be reached. 

Since such a discussion is fairly complex, it will be divided into parts,  accord- 

ing to certain properties of the group k. Fi rs t  of all, it will be assumed through- 

out that the group j, contains off-plane satellite points. Otherwise this group 



(with singularity A) discarded) could offer no help in analyzing the singularity of 

. This group together with station 4 could then be completely disregarded and 

deleted from ??matrix. If this "new" matrix were non-singular, the observ2~- 

tions from 1 , 2 , 3  would determine the targets in j, (Z # 0) and station 4 could ~n 

turn be uniquely determined from j,, which is  possible in absence of singularit~j 

A). But stations 1 ,2 ,  k in this new ?? matrix could be considered as  observing 

all the targets and the problem would thus be reduced to the one delt with in t-ae 

previous sections. Similar argument would hold for two o r  more replacements, L e a ,  

if j, did not contain off-plane targets, the problem with two replacements would 

be essentially reduced to the problem with one replacement, etc. Consequea'cBy, 

the group j, will be considered off-plane not only in this section, but also in 

all sections dealing with replacements of stations. Next, two basic possibilities 

can arise with respect to the group k: 

(1) j, contains off-plane satellite targets, which i s  of 

practical importance and will be analyzed in section 1.411; 

(2) j, contains in-plane satellites only; this problem, rather 

of academic interest, i s  presented for the sake of completeness in 

section 1.412 and summarized in section 1.431. It can be further 

subdivided into the case when all the targets in & lie in a plane i n  

general position and the case when these targets lie in a plane which 

happens to pass through station k, i. e.,  in the plane n (see earl ier  

notation). From the general point of view, nothing essential i s  

lost if the part of section 1.412, starting with case (a) and continuing 

with other rather special cases and lenthy derivations, is skipped; 

all the results and conclusions of this section a re  listed in seeti011 

1.413. 

1.411 Group jk Considered a s  "Off-Plane Targets". 

Since singularity A) for  station k as  well as for  station 4 i s  automalciealig 



discarded, the remaining necessary conditions are:  avoiding singularity A) 

for  the other stations (i. e., no corresponding satellite group should be in plane 

with such stations), avoiding singularity B) (i. e., the ground stations should 

not be all on one second order curve), and presence of at least one more  quad 

observing off-plane targets. Since 

it holds that 

Similarly, 

The remaining part  of the system (1.4-11) can be written a s  

where the dots can represent row blocks for  any number of i stations. For  

the remaining a-coefficients to be zero it i s  necessary that all the remaining 

c-coefficients be zero. However, not all the stations associated with the above 

system need observe their targets off-plane. If one of them, such that its corre- 

sponding row in F matrix of (1.4-12) i s  independent of the rows f, and f, ob- 

serves off-plane targets,  the corresponding c-term i s  brought to zero  (besides 

e, and q). But then the only solution of (1.4-lla) i s  

md consequently all the c-terms a re  necessarily zero. Any station having the 



above property is  clearly an off-curve station. Since singularity B) has been 

discarded, such a station must exist and the discussion is complete, A s  a 

conclusion, in this section the necessary and sufficient conditions for ?? matrix 

being not singular are: elimination of singularity A) fo r  all the other stations 

(besides stations 4 and k), and the property, that at  least one of those stations 

is off-curve and observes off-plane targets at the same time. 

1.412 Group & Considered as  "In-Plane Targets". 

Like in all examined cases, due to the group j, containing off-plane targets, 

it holds that 

+ G = + o .  (1.4-18) 

For  the following analysis it will be assumed that 

Due to (1.4-18), one b-term can be eliminated from the f i rs t  row of (1.4-11a) ; it 

is chosen to be the b, term, namely 

for which the assumption (1.4-19) was needed. Otherwise, a different elimination 

procedure would have to be used. Next, the full system can be rewritten in the 

where the dots make allowance for some i-stations, and where several s-stztisns 

can appear (here s', d'). In the above, the following notations have been made: 



The necessary row conditions for  the matrix of (1.4-21) to be non-singular 

are such that at least two row blocks (including those for  i stations, if present) 

have tlze rank equal to four, while the others have the rank of at least  three; 

otherwise the row ranks would not even add up to reach the number of columns. 

Consequently, at least two stations besides station 4 have to observe off-plane 

'targets, 

The column conditions with respect to singularity A)  a re  the same a s  those 

presented in the more general section 1.41. (They a r e  automatically fulfilled 

for station 4. ) In the analysis of singularity B), the last  two columns in the matrix 

of (1- 4-21) will be considered. They would have rank l e s s  than two if the relations 

held, together with 
2 

q,3 = c q, 

if some i stations were also present. 

In the case of 

q k 2  = 0 

i twould have to hold simultaneously that 

according to (1.4-23). The condition (1.4-24a) leads to 



implying that stations 3 ,4  and k a re  lying on a straight line. The condit.ion 

q: = 0 leads to the equation of a second order curve in (G, y,) - xT, 

Denoting a t j  a s  the ij th element of the (2 x 2) matrix A and a, a s  the i th element 

of the 2-(column) vector a, i t  holds that 

a,, = 1 ,  

The above curve i s  a hyperbola, passing through stations 1 , 2 , 3 , 4  (if the eoordi- 

nates of those stations a re  substituted f o r  the coordinates of station k, the 

equation (1.4-25b) i s  fulfilled); it will be called a "special hyperbola". Should 

q: = 0 and qt = 0 hold simultaneously, station k would have to lie on the inter- 

section of the line given by (1.4-25a) and of the special hyperb3la, which would 

constraint the location of k to at most two isolated points. Throughout in this study, the 

policy will be accepted to discard all cases when the location of any station o r  

satellite point is restricted to some isolated points. Thus, critical configura- 

tions consisting of straight lines, curves, and later  surfaces will be examined, 

with little attention paid to some isolated singularity, even though it may be 

easy to compute it; in many instances, existence of such isolated points wi l l  

be only mentioned. 

With the case (1.4-24b) discarded, the constant c can be expressed from 

(1.4-23) a s  



In presence of station(s) i, the equation (1.4-23a) yields: 

which gives r ise to a second order curve for station i. Upon using (1.4-16a)- 

(1,4-16e), it is  seen that this second order curve passes through stations 1 ,2 ,3 ,4 ,  

k, For any station s (here s' and d) ,  the relations (1.4-23) yield 

giving rise to second order curves for stations sf and s". The form of this equation 

dosely resembles (1.4-26a). Both equations (1.4-20% and (1.4-26b) would have 

dl. the coefficients of f, or f, equal to zero under exactly the same conditions 

which lead to V2 of (1.4-15) having dimension one. Such cases were assumed 

aon-existent. Upon using (1.4-17a) - (1.4-17c), this equation i s  satisfied 

and the second order curve for any s stations is seen to pass through 

stations 1 ,2 ,3 ,4 ,  and k as  well. Thus, the same conclusion is reached with 

respect to singularity B) as in the more general section 1.41. In other words, 

sinplari ty B) occurs when there exist no off-curve stations. 

A s  stated in section 1.41, singularity C) has to be examined in order to find 

the sufficient conditions for non-singular matrix. With station j, observing 

alavqs off-plane targets and station k taken in this section as  observing in-plane 

targets, three basic cases will be examined. They will be called: 

Case (a), when no station i beyond station 4 observes off-plane 

targets; thus at least two s-stations must observe off-plane 

targets to fulfil the necessary conditions. 

Case (b), when one station i observes off-plane targets; thus 

at least one s-station i s  required to observe off-plane targets 

in order to fulfil the necessary conditions. 



Case (c), when two stations i observe off-plane targets, i. e. , 

when three off-plane satellite groups are  observed from stations 

preceding station k; under certain assumptions, these three groups 

can prove to fulfill not only the necessary, but also the sufficient 

conditions for  non-singular z. 
Furthermore, each of these three cases can be further subdivided into two parts, 

one, in which the targets in j, lie in a plane in general position and the other, 

in which this plane passes th rowh station k, i, e. , it is the plane v.  This subdiarision 

was already mentioned at the end of section 1.41. The f i rs t  part will be given 

number "1" and the second number "2", so that at  certain point the notations 

case (al) ,  case (a2), etc., will appear. A s  stated earl ier ,  the res t  of this section 

can be skipped without loss of generality; it i s  summarized in the folloviing 

secion 1.413. 

Case (a). Due to the necessary conditions, 

has to hold for a t  least two s-stations. It will now be examined urtder what 

circumstances this condition is also sufficient for non-singular matrix xvith 

exactly two such s stations, denoted as s' and s ,, . If 

and 

then with j,' and jsu containing off-plane targets, it follows from (I,$-27; 

and (1.4-21) that 



When these two e - t e r m s  a r e  substituted in (1.4-28), it is  obtained: 

For the unique solution to  exist, i t  has to hold for the determinant of the 

matrix to be inverted: 

where 

(The symbol D should not be confused with the one used in section 1.41 

to denote other types of determinants.) If it held that D = 0, then (1.4-29a) 

would result in 

which would be fulfilled if: 

1) yap = 0 ,  station s 'lying on a straight line through 
stations 1,2. 

2)  y , / /=O  , station s" lying on a straight line through 
stations 1,2. 

N 3 )  Stations k, s , s lying on a straight line (of any 
direction). 



The analysis in this fashion can proceed only if the above three conditions 

a r e  eliminated, which is hereby assumed. The solution of (1.4-29) can be 

then written a s  

where 

These terms can be further developed and the following identities made: 

where 

thus 

Further, 

When the relations (1.4-30) a r e  used in the row block for station k in the 



system (1.4-21), it is obtained that 

where - - - [: 1 ]. (1.4-34.) 1 
"' + q; 1; 1 , u + 2 + s, M = [v; , ulv; + V l V k  

i - 

It is  easy to show that when 

rank M = 3, (1.4-35) 

.$hen % matrix is non-singluar. Clearly, when (1.4-35) holds, then the only 

solution of (1.4-34a) i s  

But then 

which follows from (1.4-29) and 

from ((1.4-20). Thus all the b-terms and consequently al l  the c-terms a r e  

equal to  zero. Since singularity A) is assumed to  be eliminated a s  a 

necessary condition, the a-terms for the remaining i-stations and s- stations 

must be equal to zero a s  well, which completes the proof for  non-singular - 
7 i s  

It remains to examine the rank of matrix M. If the conditions for 

rank M < 3 (1.4-36) 



a r e  found and eliminated, then the sufficient conditions for non-singular 

x have been specified. If (1.4-36) holds, then 

which is 

Here (X1 , Y Z and (& , Y2, Z2 ) denote the f irst  two targets in j,  ( j ,, and 

j%), while the variable point (X, Y, Z)stands for any further target in j ,, 
The above relation represents the equation of a plane in (X, Y ,  Z), which 

passes through jQ and k2 (the equation is fulfilled when the coordinates of 

kl o r  i2 a r e  substituted for variable point). Upon performing the obvious 

equivalence operations on (1.4-38a), it becomes: 

The second and third rows in this determinant a r e  dependent if it holds that 

i. e . ,  if any further target in j, lies on the straight line connecting j),, and 

jk2 Consequently, (1.4-36) holds and x matrix is singular whenever al 

the targets in j, lie on a straight line. 



From the form of (1.4-38a) it is also clear that 1 M / = 0 whenever 

2 u2 = CUI, vz = cvl, and q: = cqk . (1.4-39) 

Then the third column of M is the c-multiple of the second column 

identically for any X,Y,Z. The conditions leading to (1.4-39) will be now 

emmined in detail. First, the case with q; = qg = 0 is discarded in 

accordance with (1.4-24a), (1.4-24b) , and the discussion which followed. 

With c = q:/q: , the relation (1.4-39) yields two conditions : 

and 

The fiyrst condition leads to 

and the second condition leads to 

Both (1.4-40a) and (1.4-40b) represent a second degree curve (in general 

different from each other) for sf', passing through stations 1, 2, k, and s'; 

I I this follows from (1.4-17a) and from the fact that f E N  = f, whenever s"= 3 . 
Udess (1.4-40a) and (1.4-40b) represent the same curve, a common solution 

f o r  sl' would be restricted to some isolated points. Accordingly, such cases 



will be discarded. Should the above two equations represent the euLrve, 

it would have to hold identically (for any sr' ): 

(If: - ef ,z)ff /  = c [(gf:  - g f ; )  f f f  + (gf; - gf ; ) f ; l ]  , 

(kf: - df:) f.'f + (fi"f: - f n l f t ) f ~ /  = ~ ( e f ;  - $f;)f,i/ , 

(Gff - fe2f,') f p  = c ( e f ;  - ef:) f;l . 

(due to the earlier specification that qz $ 0 ) it follows from (1.4-4lc) that 

Apart from the cases when y s /  = 0 which was eliminated in (I. 4:-2%') 

due to D # 0, or x s P  = x , , it follows, when (1.4-42) is substituted do either 

of (9.4-4la) o r  (1.4-4Ib), that 

This is the equation of a second order curve for s f ,  passing through stations 

I, 2, 3, 4, k (if the substitutions a re  made for fs f according to (1.4-17a) - 

(I. 4-17c), the equation (I. 4-43) is fulfilled). With this specifi cation. regarding 

station s made, the conditions for station srr can be further examined, E 

s" 5 3 is considered in (1.4-40a), then (1.4-43) is obtained (multiplied by-f: ) 



and the curve (1.4-40a) is seen to pass through station 3.  If sm 4 is 

considered in the same equation, then two terms a r e  obtained: one which 

was already shown to be zero in the substitution s = 3,  and the other which 

yields again (1.4-43), multiplied by -h2. Similar conclusions hold if the 

equation (1.4-40b) is used with the same substitutions for sf/ (leading to 

(I,$-43) multiplied by f i  and f41). Thus it has been shown that for 

jL4-39) to hold, both stations s f  and sN would have to lie on the same 

second order curve passing through stations 1, 2, 3, 4, k (except for some 

special cases which were discarded). In other words, 1 M I = 0 would hold 

identically for any X, Y , Z if s ' and sf/ were on-curve stations. 

Next. an investigation will be made in order to determine whether there 

are some more general conditions than those expressed above, under which 

I 3A / = 0 would hold identically for any X, Y, Z. Such conditions would 

imply that 

in the equation of a plane for X, Y, Z,  given a s  

First, the following notations will be made: 

- 
a,, = u2(xl - xk)  + V,(YI - Y,)  +q,3 , 
- 

3 a= .- u2(X, - xk)  + v2(Y2 - yk)  + C r k  

The conditions (1.4-44) yield respectively, upon considering the equation 

(11,4-38a): 



When these four equations a r e  further developed, the f irst  combined with the 

third, and the relations (1.4-45a) - (1.4-45d) considered, the followilnig results 

a r e  obtained respectively: 

If Z1 = Z2, the discussion is relatively simple. From (1.4-46a) and (1,4--46b;3) 

it is obtained: 

and 

from these, it holds in general that 

Either of the equations (1.4-46c) o r  (1.4-46d) yields in general: 



Considering the last two relations, (1.4-39) is again found to be the condition 

which makes 1 M I = 0 hold identically for  any X, Y, Z .  However, in general 

Z, # Z, . From the equations (1.4-46a) and (1.4-46b), it is obtained: 

where 

and where a x  and a, were defined by (1.4-14a) and (1.4-14b). The equations 

(I. 4-46e) and (I. 4-46d) a r e  fulfilled automatically when (1.4-47a) and (1.4-47b) 

are used, and therefore, do not have to be considered anymore. Finally, 

(led-47a) and (1.4-47b) can be rewritten a s  

ul(q:+c*v2) = uZ(q;+CyVl) 

and 

vl (qk3 +cxuz?) = va(qk2 + cxu1) * 

Clearly Qi, these two equations hold identically, whenever 

3 
U 2 = C U l r  v ~ = c v ~ ,  and qk  = cq; ,  

which is the familiar expression (1.4-39). Otherwise, each of them can be 

shown to represent a fourth order curve for station s"; in general, they a r e  

both blfilled for station s" located at their intersections. Since these a r e  

isolated points, they will be discarded from further discussion. However, 

before dismissing the considerations connected with the .fourth order curves 



of (1.4-48a) and (1.4-48b), it will have to be found out when these curves 
2 

may coincide. They can be both written in t e rms  of &$/ , f p ,  f:/r9 ( f8"' 

f,4'fp, etc.; in order that they coincide the coefficients of the same powers 

in the variables, and therefore also in the t e rms  fsN, f,// x f," , would 

have to be constant multiples of each other. When only the t e rms  fa/ /  x f," 

a r e  considered with c denoting the multiplication constant for  the above 

coefficients, relations of the following type would have to hold: 

Altogether, there a r e  five equations of this type, pertaining respectiveljr to 
1 2  the coefficients of (f,4')2, f , ~  fd/, f& , (f,21/)2, and f2/ f,3" , since there are 

3 2 
no terms (f,/' ) in either of (1.4-48a), (1.4-48b). If 

then 

satisfies all five relations (1.4-48c). Considering (I. 4-47c), the constant g: 

can be written a s  

Under certain circumstances (namely, when xk has a specific value of 

(ZlX2 - X1 Z2 ) / (Z2 - Z1)), it could happen that 

But then the relations (1.4-48c) would finally lead to the following conditions 

for s I :  



These represent two second order curves for sf. Since the curves cannot 

coincide, s '  would be restricted to isolated points (intersections of the two 

cumes); such cases a re  discarded according to the earlier statements. 

Consequently, only the expression (1.4-48e) will be considered in further 

.invesLligptions. Next, the coefficients of f i t  @ , and E?$/ of (1.4-48a) 

and (1,4-48b) will be compared. Using the same c as  in (1.4-48c), it 

has to  hold: 

and 

q;k1el = cq,2f2 . 

For such, that 

s k 2  f 0 , 

the equation (1.4-48i) gives 

131. this approach it is assumed that x,f # x,; then f;f # 0 , since y,l Z 0 

is assearned throughout. With this c substituted in (1.4-488) and (1.4-48h), 

the following relation is obtained for station s : 



On the other hand, the constant c from either (1.4-48e) o r  (1.4-4811) must 

be the same. Consequently, 

must hold. Since y,f # 0 ,  this expresses an equation of a straight line for 

s I ,  passing through k and having the direction given by 

(see earl ier  notation); as a matter of fact, this line is exactly the line 4 , 
generated by intersection of the plane n and the plane of ground stations., 

Since (1.4-481) and (1.4-48m) both give the conditions for station s P  , it 
would restr ict  s f  to isolated points unless the two loci coincide. Bid for 

that to occur, it would be necessary that 

and 

be satisfied (for some constant C), giving immediately 

q; = 0 

and 

(The case q: = q E  = 0 had been discarded. ) However, with q: = 0 the 

equations (1.4-48g) - (1.4-48i) hold identically for any s I if 



which then replaces (1.4-48k). Equating this constant c with the one given 

by (1-4-48e), one gets again the expression (1.4-480). Since y4 # 0 ,  

(B,4-$80) can be finally written as  

which is an equation of a straight line for station 4 ,  passing through station 

3. Its direction is  given as 

;1, t g a  = , 
ax 

which :means that the line is parallel to the line 4. On the other hand, 

q: = 0 implies that stations 3, 4, and k a re  lying on a straight line. Conse- 

quentlly., stations 3, 4, and k would have to lie on the line 4. Under these 

conditilons the 4th order curve for sN would be the same, whether given by 

(Pe4-48a), o r  (1.4-48b). However, this would be a very special case. An 

imp.E-8;ant conclusion can now be made: except for some special cases, 

1 M / = 0 would hold identically for any X, Y, Z only if the relation (1.4-39) 

were satisfied, i. e., only if both s '  and s" were on-curve stations. 

According to the above conclusion, it is clear that I M 1 = 0 does 

not hold identically for any arbitrary plane. It holds only for a special 

plane, called critical plane, which can be computed from (1.4-38a) and avoided, 

Matrices M and will then be non-singular. The equation of the critical 

plane i!s given as  

where the coefficients a re  found from (1.4-38a); they are: 



Case(a2). Suppose that the plane of jk passes through station k, i . e , ,  

it is the plane n . It will be examined under what circumstances the 

critical plane generated by 1 M 1 = 0 and the plane a can coincide assum- 

ing now that j, does not contain all the targets in a straight line. When 

they a re  avoided, matrices M and 2 will again be non-singular. With 

(x,, y,, 0 ) substituted for (X, Y, Z) in the equation (1.4 - 38a), it muBd 

have to hold that 

should the plane / M ( = 0 and the plane n coincide. (q: and 4: can be 

eliminated from the first two rows by equivalence operations.) This is 

equivalent to the equation 

where 

and where a, and a, were given by (1.4-14a) and (1.4-14b). 



Before considering (1.4-51) in general, some special cases, the most 

~ p o f f t a n t  being 

will. be investigated first. If 

it is obtained upon considering (1.4-32) and (1.2-33): 

which represents a second order curve for so. Using the now standard 

approach of examining through which points a second order curve passes, 

it is seen that the curve given by the above equation passes through station 

1, 2, k, and s I. (The same curve is obtained in terms of s ', i. e. , when 

a41 the elements associated with s ' and su are  interchanged; the curve 

would then pass through 1, 2, k, and sf'.) Using certain previous stipulations 

(i.e., , k1 # 0 and eliminating of the conditions (1.4-29b1) which cause D = 0 )  

and discarding eases when some of the stations would be restricted to 

isolated points, only one special case fulfilling (1.4-52) may arise; it is 

the ease when stations 3, 4, and k lie in a straight line parallel to the 

line comecting stations 1, 2; then q: = fq2 = 0, and the equationis satisfied 

identicdly for any sf ,  sN. Otherwise, (1.4-52) represents a general second 

order curve. When 

a, = 0 

is considered, it is similarly obtained: 

The same comments can be made with respect to this equation as  those 



made when (1.4-52) was considered, except that now (1.4-53) is not 

satisfied identically when q; = f42 = 0. Should the condition 

be  fulfilled, station s" would be in general restricted to some isolated 

points, generated by simultaneous solutions of (1.4-52) and (1.4-53); the:; 

a r e  intersections of two second order curves represented by these equations* 

Again, such cases a r e  discarded unless the two curves coincide; if that is 

the case, the corresponding coefficients in (1.4-52) and (1.4-53) a r e  corn- 

pared the same way, which lead to equations (1.4-48g) - (1.4-48i) and 

exactly these same equations a r e  obtained now. In this manner one 

arr ives  again at the equation (1.4-481). Since s ' and so were mutually 

interchangeable, the same curve a s  that represented by (1.4-481) would be 

obtained for either s ' o r  sl1; to simplify the derivations, any of these tw-o 

stations will be denoted a s  s and the corresponding f-terms a s  fs .  BJt'hen 

q z  and q: a r e  substituted from (1.4-22) into (1.4-481), the second order 

equation for s is obtained in the simpliest form: 

The second order curve for s represented by this equation is seen to pass 

not only through stations 1, 2, k, but also through stations 3 and 4.  Conse- 

quently, it can be said that when both stations s ' and sl' a r e  on-curve stations, 

then au = av = 0 holds. 

Other special cases of (1.4-51) a r e  easy to formulate and will be mentioned 

only briefly. If 

a x  = av  = 0, 

then a constraint for the x-coordinate of station k is obtained, namely 



in addition, station st' has to lie on a second order curve given by (1.4-53). 

When Z 1 = Z2, the condition (1.4-54) would be replaced by X, = X2 . 

it holds similarly that 

in addition, (1.4-52) would have to be fulfilled. If Z2 = Z1, (1.4-55) would be 

replaced by Yl = Y2 . Finally, if 

then, k would be constrained to a prescribed point with the coordinates such 

as given by (1.4-54) and (1.4-55); a s  usual, this case is disregarded ( if it also 

held that Z ,  = Z,, this would mean that j,, z jb , which obviously is not true). 

The general consideration of (1.4-51) again leads to a second order curve 

for sla"con s". It has the form: 

This curve passes through stations 1, 2, k, and s : (Station s and so could 

be again interchanged). Considering the earl ier  assumptions and disregarding 

certain special cases according to previously mentioned specifications, only 



one further special case will arise:  

qk2 = 0 

together with 

implying that stations 3,  4, k, lie in a straight line of the prescribed 

direction 

t g a  = % 
ax 

regardless of s f  and s". Obviously, it is the line 4 , .  Consequently, the 

relation (1.4-51) is fulfilled identically for any s ', s", if stations 3, 4, k 

l ie  on the line 4,. Otherwise, (1.4-51) leads to a second order curve fo r  station S" 

expressed a s  

with the elements: 

and 

where 



and (1.4-56c) 
3 2 1  2e/ + q;g21 ) x,+ [qk r t +q:(fil&- f2f:')i y k -  6 , = a x C ( - q k &  

In conclusion, it can be said that the plane corresponding to 1 M I = 0 and 

the plane ?T coincide if station s" lies on a second degree curve expressed 

by (1.4--56a) - (1.4-56c). Of the special cases, the most significant was the one 

characterized by stations s l ,  sN as  being on-curve stations. But for such 

eodiprat ion I M I = 0 was fulfilled identically for any X, Y, Z and, therefore, 

i t  had to hold for plane T as  well; this case thus provided a useful verifi- 

cation of the earlier derivations. A quite important special case also arised 

when stations 3, 4, k lie on the line 4 .  Finally, when station sN does not 

lie on the above curve and none of the specie1 cases occurs, 1 M 1 = 0 does 

not hold and M and matrices a re  non-singular. 

,, Due to necessary conditions, the relation (1.4-27) will have to hold 

for  at least one s station, i.e., the corresponding js will have to contain 

oE-plane targets (in addition to j4 and j5 ). It will be examined under what 

ciremstances this condition is also sufficient for non-singular 2 matrix when 

exactly one such s station is observing off-plane targets. With this station 

denoted as  s ' , it means that 
- - 

Y , I:!] = 4. (1.4-57) rank [%, s 

Due to .$he j4 and j5 (containing off-plane targets), it holds that 



which a r e  already expressed in (1.4-18), and 

Using the f irst  two rows in the system (1.4-lla),  bl and b, can be expressed as 

follows: 

For  the unique solution to  exist, it has to  hold f o r  the determinant eienoted by D 

as in previous sections) for the matrix to be inverted: 

For  D = 0 it would hold that 

Y4Y5 (% - ~ 3 )  ( ~ 5 -  ~ 3 )  = Y4 Y ~ ( Y ~ - Y s )  ( ~ 5 - ~ 3 ) 9  

which would be fulfilled if any of the following occurred: 

1) y, = 0 , station 4 lying on a straight line 
through stations 1, 2 . 

2) y, = 0 ,  station 5 lying on a straight line 
through stations 1, 2. 

3) Stations 3 ,4 ,  5 lying on a straight line 
(any direction). 



These $"nee conditions will be assumed eliminated. The solution of (1.4-59) 

is then given as 

where 

E,vressing ck and c,' from the system (1.4-lla) and using (1.4-61), it is 

found that 

With these notations, the system (1.4-11) can be written a s  

where the row blocks for  some stations i and further stations s could be added in 

an obvious fashion. 

At this point, it will be examined for later  use under what conditions 



and 

t, '= 0 

can hold. The condition (1.4-65) leads to a second degree equation in x,, y,, 

namely 

Since 

fk = 0 whenever k z 1, 2, 3, 

fk = fQ if k - 4, 

and 

the second degree curve for station k corresponding to the above eqluation is 

seen to pass through stations 1, 2, 3, 4, 5. The condition (1.4-66) leads to 

It is clear that the second order curve for s' represented by this equation 

passes through stations 1, 2, k. If f,' were replaced by f4 or  f, , the 
equation (1.4-69) would hold. Since (1.4-17c) would have similar form with 

respect to station 5, i. e. , 

it follows that (1.4-69) holds for s' = 4 and s' - 5 whenever it holds for 

s' 3; but this happens only if (1.4-67) is satisfied. Consequently, the 



second order curve fo r  t,'= 0 passes through stations 1, 2, 3, 4, 5 only if 

t k  = 0 holds. In this case the second order curves for  s' and k given by (1.4-66) 

and (1,445) coincide. Otherwise the curve for st, passing through 1,2,  k, is given as 

where 

and where 

Aft'er these considerations amore  general discussion of case (b) can reswme. Due 

to ($.4&51), the solution of 

is given a s  

where 



as  seen from (1.4-64). From here, the coefficient b3 will be substituted in 

the first row block of (1.4-64); namely, 

and 

where 

Necessarily, it has to hold that 

- 
11 M = [Yt , Y:- pS 

t,' 

so that s1 cannot lie on the second order curve described in (1.4-69) through 

(1.4-7Oc). 

Again, it is easy to show that when 

rank ik = 3 

1 
: 
1 

- 
holds, matrix is  non-singular . The only solution of (1.4-73a) is  then 

- 2 t  
9 Vy- Ps' ;, I .  

then 

bl = bz = bd = 0 

must hold due to (1.4-72) and (1.4-61). Thus, all the c-terms are  equal to  

zero, and since by necessary assumptions singularity A) is supposed to be 



elimimked, the a-terms associated with any i and s stations added to the 

system (I. 4-64) would now have to be zero (for stations 4, 5, k, and s' 

the trivial solution for the a-coefficients was already demonstrated in (1.4-58a), 

(1,4-58b), (1.4-75a), and (1.4-71), respectively). This completes the proof 

for the non-singularity of matrix. 

It remains to examine the rank of matrix M. If the conditions for 

rank M < 3 

are found and eliminated, then the sufficient conditions for non-singular have 

been specified. If 0.4-76) holds, then 

with the same description as that made with respect to (1.4-38a); namely, the 

above relation is the equation of a plane in (X, Y, Z) ,  which passes through 

j and j% . With the same equivalence operations which lead to (1.4-38b), 

(1.4-78a) now becomes: 



Again, the second and third rows a r e  dependent if any further target in j, l ies 

on a straight line connecting jkl and jh . Consequently, ?f matrix i s  singular 

whenever all the targets in jk  lie on a straight line. 

Next, the conditions will be determined under which I M / = 0 holds 

identically for any X, Y, Z. As seen earl ier  in (1,4-44), such conditions: 

would imply that 

in the equation (1.4-78a) of a plane for  X,Y,  Z, written a s  

It cannot happen when Z1 = Za , since (1.4-79) would then lead to j kl - j k ,  , 
which is not true. When Z # Z2 , then the conditions in (1.4-79) imply that 

and 

where k, = x1z2- ZlX2 
and ky = 

Y1 Z2 - Z l Y a  

z2 - z1 z2 - Z l  

The relations in (1.4-79a) can be expressed as 

[yk(Yk- ky)gl  f?+[yk(yk'ky)h- tk] $' + [ yk (yk -ky  ) ]  e' = 0 (11-4-80a) 

and 

[yk(xk-kx)g-tkl  f,l' + lY ,  ( xk -kx )  h l  e' +[yk(xk- k , ) ]  el:- 0 ,  (1-4-80bp 

which represent two second order curves for  s'; in general, s' is restricted 



to some isolated locations, unless the two curves coincide. In the latter case 

it would have to hold according to the now standard procedure: 

Whether 

X, = k, and yk = k, (1.4-81) 

holds o r  not, the above equations a re  fulfilled only when t, = 0 , i. e. , when 

station k lies on a second order curve through stations 1,2,3,4,5. But, then 

(1.4-81) would have to hold due to (1.4-79a). These two conditions for k 

are either impossible or restricting station k to an isolated point and will 

be therefore discarded. Consequently, 1 M I = 0 cannot hold identically for 

a rb i t r aq  p i n t s  X,Y, Z. 

). According to the above conclusion, I M  1 = 0 holds only for a 

special plane, called critical plane, which can be computed from (1.4-78a) 

and avoided. Matrices M and ?f will then be non-singular. The equation of 

the critical plane is  given a s  

where the coefficients a r e  found from (1.4-78a); they are: 



Case( b 2). Suppose that the plane n. is now the plane containing all the targets 

in j, and that all the targets in jk do not lie in a straight line. Should the plane 

i = 0 and the plane 71. coincide, i t  would have to hold that 

Whenever y,' = 0 or t, = 0 ,  this relation holds, since the third row inside 

the determinant contains only zeros. In general (ys/ # 0, t, # 0 ), the above 

equation holds if 

a x e '  = a,fF 

is satisfied, which yields: 

But, this is the equation of a straight line for station s ' ;  this line passes 

through station k and its direction is given a s  

which means that it is the line 8. Consequently, I M I = 0 holds in any of 

the following three cases: 



1) y,/ = 0, station s' lying on a straight line through 
stations 1,2. 

2) Station s' lying on the line 4. 

3 )  Station k lying on a second order curve through 
stations 1,2,3,4,5 (i. e. , & = 0). 

- - 
Othemlise M and 'Al matrices a re  non-singular. 

C - The satellite groups jq , j5 ,  j6, are  now all .considered to contain 

off-plane targets. Therefore, 

holds, which is also true for the corresponding a-terms. If station 6 lies on 

a second order curve through stations 1,2,3,4,5, then (1.4-84) alone would 

not impliy that all three b-terms in the system (1.4-lla) must be zero. 

It would then be possible to express b, and b2 in terms of b3 and the 

a d y s i s  would be carried out the same way as  it was done for case(b). 

Consequently, it will be assumed that station 6 is not lying on a second order 

curve through stations 1,2,3,4,5. This gives for the b-coefficients: 

as the ody possibility, making all the c-terms equal to zero. With 

siwkriv A) eliminated a s  a necessary condition, all the a-terms for 

stations i preceding station k a r e  zeros. The system (1.4-11) is thus 

reduced to 



where any number of s-stations can be used. 

Case (c 1). When the targets in j, a r e  not in plane with station k, then it 

holds that 

N N 

rank [v:, v,Y, ';;: ] = 3 , (1.4-86) 

which forces the three a-terms for station k to be zero. Due to s i n w a r i w  

A) eliminated, also a-terms for all s-stations must be zero which thus b r i zs  

all the a-terms and b-terms to zero. Accordingly, 2 matrix is always non- 

singular in this case. 

Case (c 2). When the targets in j, lie in the plane IT (as a special case they e m  

also lie iil a straight line), the relation(1. 4-86) does not hold and a - t e r n s  fo r  

statim k a r e  not automatically equal to zero. If the rank of the second group in 

(1.4-85) were less than four,the system (1.4-85) would not have to have the tri- 

vial solution and would be singular. Thus,at least one of the groups js will 

have to contain off-plane targets. If the corresponding s-station is  such that it 

lies in a straight line with stations 1 and 2, namely 

Ys = o ,  

then it holds that 

and the a-coefficients for this station must be zeros. But that leaves the 

a-coefficients for station k unchanged (not necessarily zeros). Therefore, it 

will be assumed that 

Y , +  ' 9  

which means that (1.4-87) cannot hold (unless s = k which is not true). Since 

j, is assumed off-plane, it holds that 



where 
1 c = a,"p, + a,Y P,2 ; 

it is further assumed that 

otherwise the following proof would be slightly different and somewhat shorter. 

From (1,4-88a) and (1.4-88b) it follows that 

when substituted in the f i rs t  row block of (1.4-85), this yields 

where 

0 r 

here, the coordinates (X,Y, Z )  can denote any point in n. 

Clearly, when it holds that 



then matrix is non singular. It follows from (1.4-90a) and (1.4-89) which 

bring the a-terms for station k to  zero, from (1.4-88a) for station s ,  and 

from the fact that singularity A) was eliminated (for any further station s ), 

It is then sufficient to specify when (1.4-91) does not hold and to avoid such - 
cases; namely, it has to be found when the determinant of an (2 x 2) submatrix of M is 

equal to zero. For  the f i rs t  such submatrix, one would obtain that 

or ,  after some algebraic manipulations: 

which stipulates that station s l ies on the line 4,. The same results would be 

obtained for any other point in lz replacing jk, o r  jk2; in other words, with s on 

the line 4, the above determinant is equal to zero with any two targets i n n .  

As seen above, if s is such that it lies in line with stations 1 and 2, o r  on the 

line &, then the fact that j, contains off-plane targets is  not sufficient to make 

matrix non-singular. In order to achieve it, still another satellite group 

would have to contain off-plane targets. A s  demonstrated earl ier ,  any such 

group would be of no help if y, = 0 held for the corresponding station. There- 

fore, only y, # 0 and the corresponding j, will be considered. Suppose that two 

such satellite groups are  denoted as j; and jSn. If any one of the stations si o r  s" 

i s  such that it lies on the line t ,  the corresponding group j, alone can be sf  no 

help to make ?? non-singular, as seen from the above derivation. If both stations 

lie on 4, then, necessarily, 

holds and the relation between +* and +y i s  unchanged; it remains such as given 



by (1.4-89). The solution for the a-coefficients for station k is then the same, 

whether one o r  both stations s are  used. This means that no matter how many 

s-stations have their satellite groups off-plane, as long a s  they all lie on the 

line 4 their contribution cannot make ?? matrix non-singular. - 
Consequently, and matrices are  non- singular if there exists such s 

station observing off-plane satellites, that it is  not lying on the line connecting 

stations 1 and 2, or'on the line 8. (Using the earl ier  terminology, one could 

also say that singularity A) for station k should be eliminated with respect to 

that particular station s. ) 

I. 413 Summary for Group jk Containing l1 In-Plane Targets1'. 

this section, several most important conclusions will be  repeated in order 

to summarize the whole of section 1.412 which deals with the group jk containing 

only an-plane targets. The necessary conditions for non-singular matrix were 

such t h t  at least two satellite groups besides j4 had to contain off-plane targets, 

that singularity B) did not occur (all stations lying on one second order curve), 

and that singularity A) was eliminated (it wodd occur if for stations other than k 

the corresponding satellite groups lay in one plane through that station, and for 

station k,  besides the case of all targets in jk and js lying in one plane through k 

called plane n3 if in addition to  the targets in jk lying in n all stations s would lie 

on the line 4, generated a s  intersection of the plane nand the plane of ground 

stations). To stipulate sufficient conditions in order that ?$matrix be non-singu- 

lar, the distinction was made whether the group jk lay in a general plane, o r  in 

the plane n (passing through station k and including the configuration when al l  the 

targets in jk lay in a straight line). When a general plane was considered the 

eases were examined with the following satellite groups off-plane: j4, js: and j s/' 

called ease (a l ) ,  j4, j5, and j,' called case @I), and j4, j5, and j 6  (station 6 not 

lying on the second order curve through stations 1,2,3,4, and 5) called case 

(cl). Assuming that singularity A) does not exist, the necessary and sufficient 



conditions for xrnat r ix  to be non-singular were found to be: 

In case (a l )  to avoid such plane for jk a s  given by (1.4-49) 

and (1.4-50), and of special cases to avoid s' and / being both 

on-curve stations (i. e.,  lying on the second order curve through 

stations 1,2,3,4, and k). 

In case @1) to avoid such plane for j, as given by (1.4-82) alnd 

(1.4-82a); further, to  avoid station sf lying on the second order 

curve through stations 1,2,3,4,  and 5, in case that station k 

lies on it, otherwise the curve to be avoided for s' is given by 

(1.4-70a) - (1.4-70c). 

In case (c l )  no further specifications were necessary. 

When the targets of jk lay in the plane T ,  the same satellite groups as above 

were examined and the analysis correspondingly divided into case (a2), ease @2), 

and case (c2) with the same stipulation for station 6. Assuming again that singu- 

larity A) does not exist, the corresponding necessary and sufficient conditions 

were found to be: 

In case (a2) to avoid station / lying on a second order curve 

expressed by (1.4-56a) - (1.4-56c) and the special case with 

stations 3,4 and k lying on the line k; a special configuration 

which has to be avoided for any plane (not only T )  was already 

mentioned in case (a l )  as sf and s// being both on-curve stations. 

Another special configuration to be avoided is the one with a l l  

the targets in jk lying on a straight line. 

In case (b2) to avoid station sf lying on a straight line through 

stations 1 and 2, o r  lying on the line k ,  and to avoid station. k 

lying on a second order curve through stations 1,2,3,4,  o r  5; 

a special configuration to be  avoided is when all the targets in 

jk lie in a straight line. 

In case (c2) to avoid station s - one further station which is 



required to observe off-plane targets due to jk lying in 

the plane 1~ whether all  the targets in jk form a straight line o r  

not - lying on a straight line through stations 1 and 2, o r  lying 

on the line &. If only the groups j4, js, and js contain off-plane 

targets the problem is singular in this case. 

: = P - *.?NO Replacements: Stations 3 and 2 Replaced by Stations k and s'. 

The difference between this section and section 1.41 consists in further 

replacements of stations at the level of s-stations. For some station s denoted 

as s' (co-observing with stations 1,2, and k), any further s-stations will be 

a s s m e d  to co-observe with stations 1, k, and that station s', which thus effec- 

tively replaced station 2. The following derivations will make use of some results 

obtained in section 1.41; building of 2 matrix will be basically the same up to 

and including station st Of further s-stations, one denoted as  s! will be con- 

sidered in the following derivations. Naturally, it will differ from station s! 

ded t  with in previous sections in that s" i s  now co-observing with stations 1 ,  k, 

and S' rather than with stations 1 ,2 ,  and k. The approach in this section will 

again consist of eliminating the parameters associated with the satellite group 

jp using observations from stations 1 ,  k and s: The now standard procedure for 

obtaining matrix ?f and examining its rank will be used: f irst ,  the necessary 

conditions for  non-singular ?f matrix will be analyzed with no specifications for  

the satellite groups k and j,'; then in addition to the usual assumption about 

j, containing off-plane targets, only the practical cases will be examined, 

1rame8y when the targets in j, and j,' are  also lying off-plane; finally, the suffi- 

cient conditions for non-singular matrix with the above assumptions will be 

formrs-k;i8;ede 

The parameters associated with j," will be eliminated using the relations 

resulting from stations 1 ,  k, and s' observing the targets in j;. When considering 

the first two stations (1 and k), two equations similar to those given in section 



1.41 are  obtained. Due to the observations from station sl(all stations are lying 

in a plane), it  holds that 

where j,N stands for any target in the satellite group j,N. All three equations can 

be arranged in a matrix form a s  follows: 

The determinant of the (3 x 3) matrix in this expression is given as  

In order that D # 0 holds, the cases with Z,: = 0 and with stations 1, k, and s' 

lying in a straight line have to be eliminated (this in addition to the earl ier  

stipulations: x, # 0, y3 # 0, yk # 0, and Z # 0 for all previous satellite groups), 

The satellite parameters are then obtained as  

I ax, = 
%Y sk~kxsf 

(-ysfTk + ykTs'), 

and 

where 

Tk = (XJsN-%)a& + ( Y J ; - Y ~ ) ~ Y ~  + Zj;a% 

and 

T ~ /  = (xJ;- xS/)axB/ + (Y~J / / -  yElf)aySI + Z j  //azS/. 

Using these expressions in (1.4-92), the following equation i s  obtained after 

some algebraic manipulations: 



- (XS'Y ~'-Ys'~:? [(XI :-%)a% (YJ :-~k)ayk + j :a% 1 + 

+ (qy:-ykx:l [ (xJ :-xs/)axS1 + (yj ;Cy.l)aysl + z J :az6/ 1 - (1.4-92a) 

- (~y./-ykx6') [ (xJ sf / -~;?a~[  + (Yj ;-y:l)ay;' + zJ ;az[] = 0. 

G";iow it i s  possible to form matrix: all the row blocks up to and including the one 

f o r  station s1 are the same as  in Table (1.4-I), where the z-coordinates for all 

stations are  set to zero and the notation s' replaces s; the row block for station 

d' is represented by (1.4-92a). matrix for two replacements with ground 

stations lying in one plane is  presented in Table (1.4-4). 

To further simplify matrix the following equivalence operations will be 

pedoi-led: 

(1) Divide each row pertaining to stations up to and including station k 

by the corresponding ZJ # 0. 

(2) Multiply each of the last three columns by -1. 

(3) Perform on the three column block of station s': 

ax,'+ axsf + PaxSN, ayS1+ ays/ + pay[, az,l-.az,/ + paz;, 

where 

(4) Perform on the three column block of station k: 

where 

(5) Divide each of the rows "From # ' I  by -(%ya/-ykxS/) # 0. 

(6) Perform further on the three column block of station k: 

(7)  Perform on the last three column block: 





(8) Perform further on the last  column: 

(9) Divide each of the rows "From s'" by yk # 0. 

The matrix thus obtained is called 2 matrix for  two replacements with ground 

stations lying in one plane; it is presented in Table (1.4-5). Up to and including 

the soxvs fo r  station s' it is identical with Table (1.4-2) for  one replacement; 

the notations for f-terms and p-terms would also be the same as introduced 

in (I, 4-9) and (1.4-10) with respect to these stations. However, new notations 

will be needed in connection with station s": 

r? = (qy:- ykxzb(x;/- xS1), r? = (%y/- j$x ,~) (y~ l -  ysl). 

With the same simplified notations as  in (1.4-17a)-(1.4-17~), it holds that 

fd/ = 0, whenever s" 5 1,  k, s' 

f;= af,/ where a = -x#, if s// s 2, 

f l  = bf.' + cfk where b = y*-xgk and c =& la(qys~-ykx8') if g =3,  
Yk 

(1.4-94) 
and 

where 

f ,"=df , '+  ef, + ff, if s" 5 4 ,  
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The basic analysis of the necessary conditions for ??matrix to be non-singular 

wiiji be made in a general sense when no assumptions are  made concerning the 

satellite groups j, and j,' as yet. The systems associated with ?? matrix a r e  

presented in Table (1.4-6); they are  denoted as  systems (1.4-95) and (1.4-95a), 

and they closely resemble the systems (1.4-11) and (1.4-lla) of Table (1.4-3), 

see"$on 15.41. Matrices of these systems will be called similarly to those which 

represented (1.4-11) and (1.4-lla). This hold also for  the full matrix (i. e. , 

?f matrix) corresponding to the full system. The matriv of (1.4-95 a) has the same 

form aas the matrix F ghen by (1.4-12). The necessary conditions for the full matrix 

to be non-singular will be again divided into the row conditions and column 

conditions; the latter, pertaining to singularity A) and singularity B), will be 

 seated separately, 

The row conditions a re  exactly the same as  those investigated in section 

1,411 with respect to the system (1.4-11). They require that at least three 

quads observe their targets off-plane. 

For the analysis of column conditions, singularity A) will be examined first.  

Upon considering "Aat r ix  of Table (1.4-4), it is observed that singularity A) 

occurs for station k whenever all  the targets observed by it (here targets in jk 

and in both groups js) lie in the plane with it (called plane n )  with a similar con- 

clusion for station s'. Upon retracing the steps leading to the above x m a t r i x ,  

it is seen that singularity A) occurs under the same conditions for any distribu- 

tion of ground stations. The method for analyzing these cases was presented 

in section 1.41 where the name "general singularity A)" was also introduced. 

Next* ground stations a r e  assumed to be in the plane z = 0. 

Singularity A) with respect to any station except k and s'would occur if 

the corresponding satellite group contained only in-plane targets, the plane of 

which ~vould pass through that station. Singularity A)  with respect to station 





k would be the same as in section 1.41 if there were no station s!; it would 

occur if in addition to j, lying in the plane TT, station s' laid in a straight line 

with stations 1 and 2 ,  o r  if it laid on the line 4 .  However, with station s pre- 

sent, singularity A) for station k would occur only if in addition to the above 

condlitions also the following equation held: 

where 'the p-terms a re  those of (1.4-93b); otherwise, this equation in terms of s" 

has the same form a s  (1.4-13) in terms of s. It would be exactly the same equation 

in terms of s" (upon considering (1.4-93a)) if sf were lying on a straight line given by 

In this case, (1.4-96) would hold if s" were lying on a straight line with station 1 

a d  2 (i .  e . ,  y:/= 0), o r  on the line 4 .  When s ' i s  such that 

the discussion i s  somewhat longer. It will be convenient to replace the second 

row of (1.4-96) with the row pertianing to station s: since this row is assumed to 

lie in the same row space according to the above stipulations. If the ykx:/ - 
mu8"cipl.e of this new second row i s  added to the third row in (1.4-96), this 

equation can be rewritten as  

Clear ly ,  (1.4-96a) holds whenever 



Otherwise its third row can be divided by y,'y:/ # 0, and the determinant expanded. 

After some algebraic manipulations, it is obtained that 

which i s  the equation of a straight line f o r  station s .  Th i s  line passes  through 

stations k and s' (as seen upon substitution f o r  s"); therefore i t  i s  exactly the kine 

& to which s 'had been restr ic ted.  Thus it i s  seen that singularity A) f o r  station 

k occurs  under the same circumstances a s  those derived in  section 1-41;  namely, 

if in  addition to the ta rge ts  in $ lying in IT each of the stations s', s lie on the 

s t raight  line with stations 1 and 2, o r  on the line &. To complete the discussion, 

singularity A) fo r  station s'will be also analyzed. First, a few notations will  be 

introduced: (XI, Yl, Z1) and (X2, Y,, Z d  will now be  the coordinates of the (f i rs t )  

two ta rge ts  in j,'. If all the ta rge ts  in j,' a r e  lying in a plane through station s19 

such a plane will be  denoted as T ' ;  the line of intersection between the plme r f  

and the plane of the ground stations will be denoted a s  4'. Singularity A )  f o r  

station s' will occur  if in addition to the ta rge ts  in j,' lying in T', also the fallow- 

ing relation holds: 

Clearly, this  can be  t rue  if 

is fulfilled, i. e. , if station s" l ies  on the straight line with stations 1 and k, 

Otherwise, the third row in the above determinant will be divided by (&y," - 

- ykx,//) f 0, giving 



which is the equation of the straight line for  station s/: This line is exactly & 

and constitutes another case when singularity A) for  station s' could occur. 

Conditions leading to singularity B) will also be treated in a way similar 

~ta that in section 1.41. Namely, any row vector of the matrix F given by 

(1.4-12,) would have to lie in subspace V,, given by (1.4-15), should singularity 

B) occur. The rows of F pertaining to all stations except station s// were already 

treated in section 1.41. They a r e  in V2 only if the corresponding stations lie 

on the second order curve through stations 1 ,2 ,3 ,4 ,  k, in other words, if they 

are on-.curve stations. Still to be found a re  conditions for  station s" in this 

respect, Should its corresponding row in F lie in V,, the following would have 

to hold: 

this represents a second order curve for station s .  The coefficients of fs" in 

this equation would all vanish under exactly the same conditions which lead to 

Va of $4-15) having dimension one. Such cases were assumed non-existent. If 

9" is replaced by any of 1,2,3,4,or k, f,N is either a zero row or  a linear combi- 

mtiiesnn of the rows fq, fk, o r  f61 according to (1.4-94). However, if stations' is itself an 

on-curare station, then its row is a linear combination of the rows hand  6; under these 

eirci~asrsstances the above equation would hold and the corresponding second order curve 

or fs /  according to (1.4-94). However, if station s' is itself an on-curve station, 

then its row i s  a linear combination of the rows f, and fk; under these circum- 

stances the above equation would hold and the corresponding second order curve 

for  station &would also pass through stations 1 ,2 ,3 ,4 ,  and k. This leads to 



the same conclusion a s  was made in section 1.41: singularity B) occurs when 

all the ground stations lie on the same second order curve. 

For the practical discussion in this section, it will be assumed that the 

satellite groups j,, k, and jSf contain off-plane targets. Consequently, singular- 

ity A) for  stations k and sf is automatically eliminated; the necessary conditions 

of this kind for non-singular matrix are  limited to those, specifiying that no 

further satellite group is lying in the plane through the corresponding ground 

station. Necessary conditions for  singularity B) remain unchanged, while the 

row conditions are  automatically fulfilled. 

Finally, i t  will be examined when the assumptions about j,, &, and j," 

constitute also the sufficient conditions for non-singular ?? matrix. It can be 

seen from the system (1.4-95) that 

and 

since j, and j, contain off-plane targets. Since the a-coefficients for  staiiion k 

a r e  now zeroes and since jSf also contains off-plane targets, it must furtzher 

hold that 

= ,Yf = azf = caf = 0, 

Withthese a-coefficientsfor station s: it holds for  station s" and similarly f o r  m y  

additional station i (if present): 

Now the a-coefficients for  all the remaining stations must be zero (due lo  singular- 

ity A) eliminated) only if all the remaining c-coefficients are  equal to ze ro  as 

the only possibility. But this happens only if those rows of F whose e-cioeffieients 

are  zero can form a submatrix with full rank. When no further satellite group 



contains off-plane satellites, this would imply that 

Then all three b-coefficients and all the c-coefficients would have to be equal to 

zero, The above relation stipulates that station s'must be an off-curve station. 

With  m~ore stations observing off-plane satellites, at least one of them would 

have to be an off-curve station. 

This section can be concluded by summarizing the necessary and sufficient 

conditions for  a non-singular ?? matrix when stations 4, k, and s' observe off- 

plane targets: ?f i s  non-singular if in the absence of singularity A), station s' (or 

further stations - besides 4, k - observing off-plane targets) is an off-curve 

station. 

l,43 More than Two Replacements. 

If six ground stations form a non-singular network which i s  to be expanded, 

then the new network i s  in general also non-singular. The sufficient conditions 

that it be so i s  that singularity A) i s  eliminated also for any additional station, 

md that no satellite point i s  lying in the plane of ground stations. The fact 

that the  network remains non-singular no matter how many stations are  added 

=d no matter how many replacements a r e  carried out can be visualized in a 

simple manner. Let the ground stations observe their respective satellite 

groups in the following fashion: 



... j, Non- s ingul a r  

1 k s' sN  .. . j," 
Singularity A) avoided 

k s' s" Z .., jr 

There canbe any number of stations and replacements in the above illustration, 

The network consisting of six stations, e.g., of stations 1,2,3,4, k, and s' (stations 4, 

k, and s' observe off-plane targets), i s  the smallest possible for a non-singular sol~rtioa 

(to avoid singularity B) more than 5 stations a r e  needed, and to avoid singularity C) at 

least three stations - understood as  each representing a quad - should observe 

off-plane targets). Assuming the block containing stations 1 ,2 ,3 ,4 ,  k, and shto 

be non-singular, each of these stations can be uniquely determined; any three 

sf them, co-observing with some new station, are  able to determine the eoor- 

dinates of any target (provided it  does not lie in a plane with them). But since 

the new station does not lie in a plane with these targets, i t  can be uniquely 

determined from them. Thus, the number of known ground stations has been 

increased and the same argument may be repeated. 

In the illustration (1.4-97), the original non-singular part of the network 

was obtained using one replacement (namely, station k replaced station 2). 

Naturally, a similar network of six ground stations could be obtained without 

replacements (i. e . ,  three ground stations could observe all the targets a.s 

discussed in the early sections). However, when the f i rs t  replacement is 

carried out, the network necessarily consists of a t  least six ground stations. There - 

fore, one replacement is of fundamental importance and deserves much attention, 

That was the reason behind an extensive treatment of all i ts  aspects in seetioc 

1.41. It may be of interest to mention a type of problem when the network is 



sigamalar with three stations (assumed to be 1,2,3) observing all the targets, 

while laith replacements of stations it becomes non-singular . Suppose that 

s i ~ l a r i t y  A) for station k occurred in the former case (all the targets in jk 

laid in n),  and suppose that station k replaced station 2. Then, however, 

s i m l a r i t y  A) for station k would occur only if in addition to the above property 

of jk slhtion sf laid on the line t or j,'laid in T .  Otherwise singularity A) is 

removed. 

Although the sufficient conditions for non-singular networks for two or  

more replacements a re  simple to state and plausible without derivations, some- 

what dehiled procedure for two replacements was presented in section 1.42. 

Comidering the practical cases (such as  j4, jk, and j containing off-plane tar- 

gets), the results supported the theory and illustrations in this section. Con- 

cretelyir, the conditions stipulating t h a t  singularity A) must be eliminated and 

that station sf must be an off-curve station, summarized at the end of section 

1-42 ,  guarantee that the part of the network presented above the horizontal line 

 in (1- 4L-97) and corresponding to one replacement is indeed non-singular; con- 

squently , these conditions make further expansion of the network possible. 

From the theoretical point of view,the necessary conditions for two replacements 

in seeltion 1.43 were given regardless whether one replacement was possible or  

not, i, e., with no assumptions concerning the groups j4, jk, and j,'. In this con- 

t e A  it would be possible to have a singular network with one replacement, namely, 

rf the bargets in j,' lay in d, while with two replacements singularity A) for 

station s' would be removed if station s" did not lie on tf and j,// did not lie in T'. 

From the purely practical point of view, the derivations in the part of section 

1- 41 fslloMng section 1.411 and those in section 1.42 were not absolutely needed, 

since in general a large number of satellite points can be observed from any 

quad and they most often do not all lie in, or nearly in one plane, much less in 

a plane through a specific ground station. The configurations of ground stations - 
as their number is limited - appears to be much more important. Many of the 



derivations were mainly of academic interest and they were made for the sake 

of completeness; occasionally, however, they could be put in use, especially 

when the number of targets is limited. 

In conclusion, this section can be summarized by saying that any mon- 

singular network can be successfully expanded, the sufficient conditions being: 

no target should be in the plane of ground stations and singularity A) should be 

eliminated also for each further station. The smallest non-singular range network 

can consist of no less than six ground stations. In case of replacementoof sta- 

tions (leading to "leapfrogging"), the f irst  replacement can result in a mon- 

singular network and i s  therefore of fundamental importance. 

1.5 Numerical Examples and Verifications of Theory. 

Most of the numerical solutions were carried out during the f i rs t  pa r t  of 

this study, dealing with ground stations in a plane and three of them observing 

all the targets. With exception of Example 2, all the points (stations and tar- 

gets) were generated in an arbitrary coordinate system; the data was also 

generated (mostly with attached random errors) ,  whenever it  was judged appro- 

priate. In many instances, however,only the trace of the weight coefficient 

matrix (inverse matrix of normal equations, N-I) was needed as  an indicator CPE 

critical configurations (singular problems). In all the examples, the coordinate 

system was chosen the "best" possible way in order to eliminate undue n -mer i cd  

difficulties and large uncertainties in the adjusted parameters (reflected in the 

large trace of N-I), due to poor definitions of the coordinate system. These 

aspects a r e  treated in [ 1 6 ]  where the constraints which materialize the 

"best" coordinate system are given explicitly with respect to all the points of a 

cluster to be adjusted o r  a chosen subset of these (e.g., the ground stations), If 

Q represents the whole matrix  or its part corresponding to the chosen subset 

of points, then these constraints, called inner adjustment constraints, have the  

property that they render 



T r (Q) = minimum, (1.5-1) 

as compared to any other set of constraints defining the coordinate system differ- 

ently, Consequently, if the matrix N-' indicates that a network to be adjusted i s  

singular or  nearly singular, it may be inferred that this i s  due to the critical 

distribution of points rather than to a weak definition of the coordinates system. 

The ad:jusdment method used in all the problems was the method of variation of 

param~:tess in the least squares adjustment, called also "A method" (see [5 I). 
In many generated problems only the necessary number of observations were 

used, so that the solution for the parameters could be obtained without forming 

the normal equations. But since T r  (N') was of the main importance in the type 

of arne%ngisis presented in this section, the normal equations were formed, 

bordered with the inner adjustment constraints and inverted. Unless otherwise 

specified, these constraints are  given with respect to all the points of a network 

t~ be adjusted. If the notation T r  (N-l)gr i s  used when the results a re  presented, 

the traice of only that portion of N" i s  given which corresponds to the ground 

stations alone. 

For  the numerical solution of a number of problems, certain points were 

used repeatedly and a r e  presented in Table (1.5-1). The ground stations are  

denoted by the numbers between 1 and 7, while the targets a r e  designated with 

m u b e r s  higher than 150. As it  can be observed from the table, the ground 

stations are  lying in one plane and the targets, grouped by three, are  lying on 

specific straight lines, with exception of 191, 192, 193 which a re  in general 

codipradion. All the coordinates a r e  given in meters. 

The observation equations for adjustment of different range networks were 

generated in a program called Auxiliary range program. The input for this 

program had to contain the coordinates of all points in the network as well as  

the p a r m e t e r s  specifying up to which point the observations are generated on a 

one-to--one basis, the nature of observations (errorless,  etc. ), number of 



Table (1.5-1) 

Cartesian Coordinates of Some Generated Points 



gromd stations and satellite points, the nature of the inner adjustment constraints, 

if my (for all the points o r  the ground stations only), and some additional characteristics. 

The punched output consisted of the coefficients for the matrix of observation 

equatio~ns and constraints, and of the constant vector of observation equations. 

This represented the input to an adjustment program, called A method program. 

Input parameters for this program specified among other things the actual geom- 

etw of the network which was to be adjusted, since all the possible range obser- 

vations were made available by the Auxiliary range program. Thus, when delet- 

ing difflerent number of different observations, many problems could be solved 

using the same input deck. The weight matrix for the observations was stipulated 

to be a unit matrix in all cases. The judgment on singularity o r  non-singularity 

of a p e i c u l a r  problem was based on different numerical checks indicating the 

validiiw of the solution (in many cases no redundant observations were used and 

-therefore, the residuals had to  be  theoretically equal to zero). Correlation co- 

eBicierlt matrix was also considered in all investigated cases as well as N-' 

i a a t ~ i x  and its trace. Of these, T r  (N-I) and sometimes T r  (N4)gr will be presented 

in the following examples, as they a r e  expressed by a single number. 

Ex - . A special network of four ground stations and eight targets was 

generated in order to examine the behavior of the adjustment when the ground 

stations gradually depart from a plane. The targets used in this example are: 

1*51, 152,153; 161, 162, 163; 171, and 172; their coordinates a r e  presented in 

Table (4.5-1). The x and y coordinates of the four ground stations, denoted a s  

I, IhI,III,W, a re  given as  

111: x = 1, 000,000 y = o  

IV: x = 1,000,000 y = 1,000,000. 



The z-coordinate of I, TI, 111 is  equal to zero, while for TY it is varying between 

zero and 500 km. When it is  zero, the problem is necessarily singular. Alto- 

gether, seven cases are  presented in Table (1.5-2).  The column with the he&-- 

ing "d" gives the average distance between the four ground stations and 4,he best 

fitting plane; the heading "4," represents the average length in the quad T, 11, KI[I, 

IV (on a one-to-one basis). The last column gives the ratio d/&, which can serve 

as  a certain plausible measure of expected 71goodne3ssn of an adjustment, 

Table (1.5-2) 

Different Configurations of Stations I, 11,111, IV. 

The results of the adjustment a re  given in Table (1.5-3).  Thefi rs t twoeolmns he- 

yond case numbers) give T~(N-')  and ~ r ( N " ) ~ r  whenthe inner adjustment con~straints are 

used with respect to all the points of the network (i.e., eleven points), while the follo~wing 

two columns give the same values when the inner adjustment constraints are 

used with respect to the ground stations only (four points). The number of 



degrees of freedom (d.f.) for all the cases treated this way is one. In the last 

two co l~mns ,  the results are  given when all the possible observations (on a one- 

to-one basis) a r e  used in the otherwise unchanged network; the inner adjust- 

ment constraints used in this part a r e  those with respect to all the points of the 

network, The a-posteriori standard deviation for this part, denoted a s  6, i s  also 

given; it appears in the last column. Since the random e r ro r s  generated by the 

library subroutine and attached to the error less  observations came from the 

normal distribution with zero mean and unit variance, the a-posteriori standard 

deviation is not expected to depart from unity by a great amount. The pro- 

blem denoted as ease 1 is singular when only ground-satellite observations are  

considered. Numbers on the diagonal of N-I are  extremely large and negative. 

A s  a matter of fact, case 2 i s  nearly singular with the results invalidated by 

Table (1.5-3) 

Results from the Adjustment of the Generated Network 

n m e r i c a l  problems. This is also apparent from the above table, where T r  (N') 

for  the inner adjustment constraints (first column) for  all the points is actually 

l r rger  than its counterpart (third column) where these constraints apply only 

to  the ground stations, which i s  obviously wrong. For cases 3-7, this relation 

is correct, while the relation for T r  (N4)gr is opposite (i. e. , the numbers in 



the second column a r e  larger than their counterparts in the fourth colunran). When 

all the possible observations are used,the adjustment in all cases appears to be 

very strong. As illustrated in Appendix 1 ,  an improvement in the solution was 

to be expected due to the new observations which were added to an existing net- 

work. In this adjustment the results for T~(N ' )  improve very little when station 

W moves away from the plane of stations I, 11, 111. 

Example 2. In this example, several quads of the Pacific network, presented 

in 12 1, are  adjusted separately. These quads a re  denoted by small letters, while 

the stations are  represented by the same numbers under which they appeared in 

[2  1. The correspondence between the quads and the stations is  listed below: 

d ... 3 , 6 , 7 , 8  

f ... 2 , 3 , 5 , 6  

g . . .  2 , 3 , 4 , 5 .  

Due to the A method program limitations, only ten satellite points were chosen 

for each quad to be adjusted. They were selected to be as well distributed and 

representative a s  possible. In order to visualize the relations between Tr (N ') 

and the relative distance of one quad's points from the best fitting plane, the 

results were arranged in the Table (1.5-4) in a fashion similar to Example 1, 

From the table it appears that larger distances from the plane that 4 %  of ground 

distances would be necessary to obtain fairly strong solutions for individual 

quads. This would imply larger quads and/or different distribution of the 

ground stations. In order to evidence the improvement in T r  ( ~ ' ) g r  when the 

inner adjustment constraints are  used with respect to the ground stations only, 

quad f was also adjusted this way. Both cases are  presented in Table (I, 5-5) 

for comparison. Naturally, all the residuals must be theoretically the same 3.0 



Table (1.5-4) 

Quads of the Pacific Network 

* nii represents ith diagonal element from  matrix 

matter which definition of the coordinate system i s  adopted. 

Table (1.5-5) 

@ad f Using Different Sets of Inner Adjustment Constraints 

To visualize possible increase in strength of an adjustment of one quad by 

changing its shape (and, thereby, the average distance from the best fitting 

plane) bvithout enlarging its size, further experiments were performed with 

quads c and g,  which previously had the weakest solution. In quad c, station 

10 was displaced to occupy the middle area  of stations 3,7, and 8. It was chosen 

to have the coordinates cp = 10' and X = 180'(this corresponds approximately to 



x = -6,281,500; y = 0; z = 1,107,600). In quad g, station 5 was chosen to 

have the coordinates co = -3' and = 163' for  the same purpose. These two new 

quads were then adjusted (using the same sets  of satellite points). The results of 

this adjustment are presented in Table (1.5-6), which i s  organized in thle sa-me 

way as Table (1.5-4). From this table it is seen that while the "ratio" ~ralues 

Table (1.5-6) 

Modified Quads c and g of the Pacific Network 

improved in both cases two to three times, the values of T r  (N-') improved approx- 

imately six times and ten times. With this type of planning even such networks 

which consist of only four ground stations can be successfully adjusted if they 

extend over a relatively large territory, especially if many more satellite points 

are  observed as it  occurs in practice. 

Example 3. In this example mainly singularity B) is illustrated. The 

stations denoted as  1 through 5 and given by their coordinates in Table (I, 5-1) 

define a second order curve - ellipse in this case - which can be computed 

using the method given in section 1.322. Namely, its center and the end points 

of its semi-axes can be obtained in x, y coordinates. The sixth point, s t a t i o ~  6, 

can be then chosen on-curve o r  off-curve at certain intervals, in order to s t ~ d y  

the behavior of the adjustment in such cases (the targets remain the same), The 

center and the four main points of the ellipse fitted to stations 1 through 5 a r e  denoted as 

follows : 



Center of the ellipse . . x ,  

One end point of its semi-major axis . . . +  a 

The other end point of its semi-major axis . . . -a 

One end point of its semi-minor axis . . . +  b 

The other end point of its semi-minor axis . . . -b. 

The position of station 6 in this example is varied, moving at the intervals of $ 

on the minor axis and at the intervals of on the major axis (here a, b denote the 

lengths of the semi-major and semi-minor axes). In this procedure, the sign 

i~dicates the direction in which station 6 is being located with respect to x,; 

e ,  g, , -I-$ represents station 6 lying midway between the points x, and +b. When 

it does not coincide with any of the points in (1.5-2), the location of station 6 

is given only to a certain approximation. Altogether, station 6 occupies 

eleven different positions; the corresponding adjustment problems a r e  

denoted a s  case 1 through case 11, 

The above eleven cases a r e  treated in three different categories, and in 

each category stations 2,3,  and 4 observe all the targets. These categories 

differ according to the number of stations observing simultaneously. In category 1 

f u r  stations a r e  co-observing, in category 2 five stations a re  co-observing, 

a d  in category 3 all six stations a r e  co-observing. 

c -- corresponds to observing in quads, with the total of three quads; 

the three corresponding satellite groups a r e  denoted as  jl, j,, and j, and they 

are lying off-plane in all eleven cases. Each of these satellite groups 

contains four targets, whichmakes the solution possible with no redundant 

observations (altogether there a r e  (6 + 12) 3 = 54 unknowns and 3 x 16 = 48 

observations with 6 constraints, giving d. f .  = 0). The twelve targets used in 

category 1 are  the ones listed a s  151-183 in Table (1.5-1); they form the 

three satellite groups in the following way: 



The observations a re  organized as  given below: 

In addition to the above eleven cases, category 1 contains also two additional 

cases, denoted as  case 12 and case 13; they were designed to illustrate s E ~ ~ - -  

larity A) and singularity C), respectively. In both cases the coordinates of station 

6 a r e  the same as  in case 1 and the coordinates of satellite points 152, 171,  and 

183 were changed so that in case 12 jl contains targets lying on a straight line 

and in case 13 j1 contains targets lying in one plane. The new targets Pop. C B S Q  12 

denoted by primes, have the coordinates: 

The new targets for  case 13',  denoted by double primes, have the coordii~ates: 

152'' . . . 0 300,000 1,350,000. 

Category 2. requires that only two satellite groups be formed. In this category 

only eight targets a re  used (151-172), which makes the d.f. = 4. The oksserva- 

tions a re  arranged as follows: 



E the eobservations were arranged in quads with the two satellite groups denoted 

respectively as jl and j,, this category could be represented with respect to 

matrix as  

1 2 3 4  ...j3 

where j3 is obtained by merging jl and ja. This represenwion corresponding to 

Table [(I. 3-1) serves only for theoretical analysis, since the stations denoted as  

1,2, and 3 observe each target only once. 

requires only one satellite group, which in this case contains the 

s m e  eight targets (151-172) as  presented in category 2; this makes d. f. = 12 

(there are  (6 1-813 = 42 unknowns and 6 x 8 = 48 observations with 6 constraints). 

\With respect to $ matrix, the observations in this category can be thought of a s  

being a!sranged in the following way: 

Clearljr, all the satellite groups here coincide, since all stations a re  co-observ- 

ing, Again, since any of stations 1,2, and 3 observe each target only once 

(rather than three times) this arrangement corresponding to matrix serves 

only for  the theoretical analysis (unless proper weighting is applied). 

The results for all three categories in all eleven cases (thirteen cases for 

c a t e g o ~ ~  %)are presented in Table (1.5-7). This table illustrates when singularity 

occurs and how T ~ ( N ' )  behaves in singular cases. The best results in all cate- 

gories are  obtained in case 2, when station 6 coincides with x,, the center of 

the ellipse. The second best result is reached in ease 1, when station 6 coin- 



cides with the point + g. As expected, the results a re  getting worse in the 

vicinity of the critical curve, as  seen in case 8 and in case 10. Case 12 andl 

case 13 in category 1 a r e  singular a s  expected. Singularity C) also occurs 

whenever one of the three satellite groups contains only three targets (necessarily 

in plane), independently of the number of targets in the other two groups, It is 

also clear that significant improvement occurs when five stations rather than 

four observe simultaneously, a s  evidenced in category 2. Further drastic im- 

provement is to be expected when six ground stations co-observe, judging by 

the results in category 3. 

Table (1.5-7) 

Results of Adjustment in Three Categories with 
Ground Stations in Plane, Critical Curve Being Ellipse 



E:imple 4. Similar experiments to those in Example 3 a re  performed - 
with the critical curve being now a hyperbola. The difference between these 

two examples consists in the fact that station 5, given in Table (1.5-I), rather 

than station 5 is used to define the critical curve; The letters a and b now 

pertain to the real and imaginary axes of a hyperbola as  opposed to (1.5-2), 

where they were associated with the major and minor axes of an ellipse. All the 

other aspects a re  the same a s  in the previous example, except that category 1 is miss- 

ing. The remaining results are presented in Table (1.5-8). The results in this table 

beas ce-in resemblances to those listed in Table (1.5-7); ingeneral, however, they 

appear to be somewhat inferior. When station 6 coincides with x, in this example, the 

Table (1.5-8) 

Results of Adjustment in Two Categories with 
Ground Stations in Plane, Critical Curve Being Hyperbola 



solution is quite weak; the best results now correspond to the points + 2 a, - 2 2, 

and +%. The assyrnetry of the results in cases 1-9 i s  natrually due to the 

distribution of the targets, which a re  not symmetrical with respect to t h e  hyper- 

bola. 

Example 5. Two cases from Example 3, category 1 a r e  further 

modified. They a r e  case 1 and case 9. First ,  in case 1 station 4 is 

moved from the plane of ground stations upwards by 100 km, i. e. , 

With everything else unchanged, this results in 

T r  (N-I) = 34,180. 

If station 6 moves the same way instead of station 4, i. e. , if 

z, = 100,000 

then it is obtained that 

These two modifications do not cause any remarkable changes in the quality of 

the solution. If, however, the same two modifications a re  applied to case 9 

which was singular, the following results a re  obtained: 

T ~ ( N - ' )  = 1,406,000 

and 

~r (N") = 1,727,000. 

The solution is quite weak, but 'the singularity has been removed. If the first 

modification i s  made by 200km rather than by 100 km, i. e. , if 

then the solution further improves; namely, 



This solution i s  nearly as strong as  the one given in case (8). In this particular 

example, moving station 4 by 200 krn in the vertical direction from the plane 

helps $0 strengthen the solution approximately a s  much a s  moving station 6 by 

490h in the plane of ground stations toward the center of the ellipse. 

Ex - Having the same satellite groups a s  in category 1 of example 

3, replacing of stations is illustrated with the same position of station 

6 as in case 1 . The three satellite groups were presented in (1.5-3). The 

observations a r e  now arranged in the following way: 

Comparing this with the original observations given in (1.5-4), it  i s  seen that 

station 5 replaced station4 (formerly observing all the targets) with respect to 

the satellike group ja. An adjustment gives: 

t h i s  result i s  only slightly worse than the corresponding result (category 1, case 1) 

from Table (1.5-7), which gives the trace as being equal to 60,530. If the obser- 

7v~tioas of the same case a r e  arranged another way, namely 

then it i s  obtained that 

In this arrangement station 5 replaced station 2. 

Shnilar computations may be made using seven ground stations (four of 

them @ID-observing) and fifteen targets. This gives again only the necessary 



number of observations. A l l  the stations and satellite points used in the previous 

two arrangements remain the same and one ground station with one satellite 

group a re  added. Station 7 with the coordinates listed in Table (1.5-1) is the 

added station and 

j4 . . . 191, 192, 193 

is the added satellite group; the coordinates of its targets a re  listed in Table 

(1.5-1) as well. The f i rs t  arrangement in this part i s  a continuation of the nek- 

work represented in (1.5-5 a), namely 

1 2 3 4  . . . j l  

2 3 4 5  . . j ,  

2 3 5 6 . . . j 3  

2 3 4  7 . . . j,. 
The adjustment of this network yields 

Similarly, the second arrangement results from expanding the network of 

(1.5-5b), namely 

1 2 3 4  . . j ,  

2 3 4 5 . . j ,  

3 4 5 6  . . j 8  

4 5 6 7 . . . L a  

From the adjustment of this network it i s  obtained: 

The arrangement of observations in (1.5-6b) is a typical case of "leapfroggingT'# 

Since the f i r s t  replacements in (1.5-5a) and (1.5-5b) resulted in non-sin.gular 

solutions, the sufficient conditions for both (1.5-6a) and (1.5-6b) to fomn non- 

singular networks are given by stipulating that the satellite gourp j, does not 



have any targets in the plane of ground stations (z = 01, and that those targets 

do not lie in the plane through station 7. Since both these conditions a r e  fulfilled, 

the adjustment of (1.5-6a) and (1.5-6b) yields non-singular results (larger traces were 

caused mainly by larger N matrices due to twelve additional parameters). 

. This last example illustrates that singularity A) can be 

removed when replacing of stations is applied. Since singularity A) is not likely 

to happen in practice, this example is  mainly of theoretical interest. Originally, 

sinmlarity A) was achieved by modifying the satellite group j, and station 7 so 

that they form a plane. The points which were modified, denoted by primes, 

are given as 

The observations resulting in singularity A) a r e  arranged in the following way: 

the adjustment gives 

Naxt, station 7' replaces station 4 (previously observing all the targets) for 

obse-sv~~lions of the group j,. This new arrangement is presented below: 



The adjustment gives in this case: 

Even though j41 (i. e . ,  j, in terms of section 1.41) lies in the plane through 1' 

(i. e. , k), station 6 (i. e. , s) does not lie on the intersection of this plme and the 

plane of ground stations (i. e . ,  the line 4) .  Accordingly, singularity A) w a s  

removed. 

As a matter of fact, rn replacements can be applied and the f i nd  arrange- 

ment may be such, that three different stations observe all the targets. If station 

7' i s  one of them, singularity A)  i s  again removed: there is no condition 

which stipulates that no satellite group can be in plane with one of the three 

stations observing all the targets. Consequently, another adjustment w a s  made 

with the observations arranged as  follows: 

The results in this case are such that 

In other words, when stations 2,3,7 '  rather than stations 2, 3,4 observe all the 

targets, singularity A) due to j4' and 7' lying in one plane is removed. 



1.6 Conclusions 

the past sections a rather detailed analysis has been carried out for the 

range observations. The ground stations have been assumed to be lying in one 

plane. They were denoted by numbers and letters in the sequence 1 ,2 ,3 ,4 , .  . . 
J 

i . , . , k,, s , s , . . . , while the satellite groups observed by these stations were 

denoted as j4, . . . ji . . . , jk, jBJ, j,// . . . , respectively. A satellite group consists 

of those satellite points (targets) which a r e  observed by a given quadrant (quad) 

of sa t ions .  The convention used for the subscript of a certain satellite group is 

s ~ c h  that the index indicates the number o r  letter of that station in the quad observ- 

ing this satellite group which has not observed any other satellite group and/or 

which is listed as the last station in the quad; for example, the quad consisting of 

sbtions 1,2,3,  and 4 observes the satellite group j4. The division of a network 

into qmds is convenient from the practical point of view. Considering more  than 

four C O - O ~ S ~ T V ~ ~  stations does not affect the derivations made with the above 

cone ept , 

The discussion is divided into two basic parts,  according to whether the 

n-umber of ground stations observing all the satellite points is three o r  more,  o r  

less than three. When the number of stations observing all the targets is l ess  

than three the principle of replacing of stations (station replacement) i s  introduced, 

whheh leads directly to the concept of 'leapfrogging". Both concepts, the f irst ,  

dealing with at  least three stations observing al l  the targets, and the second, deal- 

ing with replacing of stations lead to similar  conclusions. The most important 

conclusion is that except for certain critical confi@mtions of points (stations o r  

targets o r  both) an adjustment of range networks gives non-singular results,  in 

spite of the fact that all stations a r e  in one plane. The network which can be non- 

singular with the smallest number of ground stations possible is said to constitute 

a fundamental unit. When a t  least three stations observe all the targets a funda- 

mental unit consists of six stations. When the principle of station replacement 



is utilized a fundamental unit i s  also six stations, except for one specific observ- 

ing pattern when the number of required stations is seven. 

When three stations denoted as  1,2,3, a r e  observing all the targets, the 

necessary and sufficient conditions for a network to be non-singular a r e  easy lo 

specify. One of the configurations which makes an adjustment singular is the 

case when all the targets in one satellite group needed for the detemimtion of 

a fundamental unit a re  in a straight line. This is only a special case of a general 

pattern when all satellite points within a group (e.g., ji) a r e  in the plane contain- 

ing the corresponding ground station (i). This case, called singularity A),  is 

illustrated in Figure 1. In a more general sense, singularity A) is  said t o  ocmr  

when all targets observed by a certain station - and such targets may be contained 

in more than one satellite group - a re  in the plane with this station. When exactly 

three stations (1,2,3) observe all targets, the targets observed by any pa&-$ieula?r 

station besides 1,2,3, a r e  a l l  contained in one satellite group. Under the3 assumpt- 

tion that singularity A) does not exist the necessary and sufficient conditions for 

a network to be non-singular a r e  such that at  least three stations in addition to 

those three (1,2,3) observing all the targets must observe targets which are not 

all  in one (general) plane (off-plane targets) and that these three stations must 

not lie on one second order curve with stations 1,2,3. If these conditions are 

not fulfilled it is said that singularity C) has occurred; such configuration of 

points is  illustrated in Figure 3. A special case of singualrity C) is  sinwlarity BB) 

when all the ground stations a r e  on one second order curve (Figure 2). From the 

above conditions i t  i s  seen that a fundamental unit consists of six g r a n d  stations. 

If such a fundamental unit exists, it is always possible to expand a network by 

adding further stations and satellite groups, the necessary and sufficient eondi- 

tions being that no target should lie in the plane of the ground stations and that 

no station should lie in a plane with its observed targets. 

If all ground stations a r e  co-observing, then singularity in a network could 



occur only if all the stations a r e  on one second order curve, or  if all the targets 

(in this case all the satellite groups coincide) a re  lying in one plane. These two 

eases are illustrated in Figures 4 and 5, respectively. Otherwise, the solution 

is non-singular. Numerical results indicated that when all the stations observed 

sLmulkneowly the solution was strengthened very significantly. 

When dealing with the concept of station replacement, it is concluded that 

one replacement (leapfrogging) can be sufficient to build a fundamental unit, 

from w~h ich further expansion is  possible under certain conditions. Therefore, 

a great deal of time was devoted analyzing the problem of one replacement where 

the hndmenta l  unit is  assumed to comprise of stations 1,2,3,4, and the satellite 

group j4 to contain off-plane targets. After two quads (formed by stations 1,2,3, 

4, and sh;;Ltions 1,2,3, k) have completed their observtions, the first replacement 

will take place. It consists of station k replacing station 3 for the next observa- 

tiinns, 'Che satellite group j s l  i s  then observed by the quad of stations 1,2,k, sf, 

etc, At this point, the discussion is  divided into two parts: in the first part 

the satellite group contains off-plane targets; in the second part,which is 

rather special and mainly of theoretical interest, the targets in jk a r e  in one 

plane. It is true for both parts that a network is singular if the targets in any 

of the satellite groups (including jk in the second part) needed for the determina- 

tion of a hndamemtal unit a r e  in a straight line. This conclusion is  similar to 

v~hat  was mentioned for three sta.tions obsenving all the targets. It is  again 

assumed that no satellite group lies in a plane passing through the corresponding 

sitation, Thus, singularity A) cannot exist. The cases denoted a s  (a2), (b2), 

and (e2)  in section 1.412 or  1.413 a re  not considered in the second part, since 

in these three cases the satellite group jk was assumed to contain targets lying 

in one plane with station k. 

With the above assumption, the necessary and sufficient conditions for a 

non-sinwlar solution in the first part (jk containing off-plane satellites) a r e  



similar to those given for three stations observing all the targets. ~ a m e l y ,  the 

network is  non-singular if there is at least one more satellite group@ addition 

to j4 and jk) containing off-plane targets and if the corresponding station does 

not lie on a second order curve with stations 1,2,3,4, and k. In other words, 

at least three stations not lying on a second order curve with stations 1, 2,s 

must observe off-plane targets. Therefore, a fundamental unit in this part eon- 

sists also of six ground stations. 

The second part, rather artificial, deals with such cases when the satellite 

group jk is composed of targets lying all in one plane (assumed not to pass through 

station k). The necessary conditions for a non-singular network stlipdate that 

there must be at least two additional satellite groups (besides jC) which contain 

off-plane targets. Consequently, a fundamental unit in this part includes seven 

ground stations (i. e. , two stations in addition to stations 1,2,3,4, and k), The 

two satellite groups of the required property can be chosen in three different 

ways which in section 1.412 or  1.413 were presented as  cases (al) ,  (bl), and (el), 

In case (al) ,  these two satellite groups correspond to stations s' and s (both 

following station k); a network is singular if the plane of jk has a specific ps i t ion ,  

given by (1.4-49) and (1.4-50), or  if both s' and si/ a r e  lying on a second order 

curve through stations 1,2,3,4 and k. In case (bl), one of these groups come- 

sponds to some station i and the other to some station s (in sections 1.412 and 

1.413 they were numbered a s  station 5 and station s'); a network is s i m l a r  if 

the plane of j, has a specific position, given by (1.4-82) and (1.4-82a), or if both 

stations i and s a r e  lying on a second order curve through stations 1,2,3,4, k, or 

(in case station i does not have this property), if station s is lying on a specific 

second order curve with stations 1,2,3, and 4 given by (1.4-70a) - (1.4-TOc), 

In case (cl) both satellite groups correspond to some stations i; a network is 

s i m a r  if these two stations a r e  lying on a second order curve with stat,ions 

1,2,3,4. If the circumstances leading to singularity in the cases (al) , $11)~ 
and (el)  a re  avoided, then the above necessary conditions a re  also sufficient for 



s noa-s i@ar network. 

If the first replacement is successfully carried out, then the resulting 

h d m e n b l  unit can be expanded to become a larger, non-singular network. 

When new stations and satellite groups are  added to it, the necessary and suf- 

ficient conditions for the new network to be non-singular a re  the same as  those 

for sknilar enlargement when three stations observed all the targets; namely, 

no hrget should be in the plane of the ground stations and no station should be 

in a plane with its observed targets. 

The main results of this section a re  summarized in Table (1.6-1). 

Since the number of ground stations is always relatively small compared 

to the number of targets, the most important conclusion is  that ground stations 

should not be distributed on or near a second order curve. 



Table (1.6 - 1) 

Necessary and Sufficient Conditions to  Avoid Singular Solutions 

When All Ground Stations Are in a Plane 

Arrangement of Necessary Conditions to Sufficient Conditions 
Note 

Observations Prevent Singularity to Prevent Singularity 

Singularity A) 
(or closely re- Any 
lated singularity) 

Singularity C) 
(global type of 
singularity) 

observe off-plane targets 

'Group 
j con- 
tains 

Station k off- 
replaces plane 

AIP shtions ob- 

One station in addition to 4 
and k not lying on a second 
order curve with 1, 2,  3 , 4 ,  
k should observe off-plane 
targets 

Two stations in addition to 4 
should observe off-plane 
targets. Always : Avoid all 
stations lying on a second 
order curve 

The same a s  the 
necessary conditions 

More complex require- 
ments (according to 
stations which observe 
off-plane targets) 

This singularity is 
assumed non-existent 
in analysis of singu- 
larity C) 

Special case of singu- 
larity C) is singularity 
B); it occurs when all 
stations a r e  on a second 
order curve 

serve a11 target lane (any plane) and all The same as the 
all sh t ions  eo htioaas lying on a second necessary conditions 

rder curve 
n-- -, ,---""----- 



2. TREATMENT OF RANGE OBSERVATIONS WITH 

GROUND STATIONS GENERALLY DISTRIBUTED 

2.1 Introduction 

Ih this chapter, the ground stations in fundamental range networks a re  

considered to be generally distributed in space. This discussion covers range 

obsemaltions made over a large territory, when ground stations a r e  on the 

physical surface of the earth, departing significantly from a plane. Since the 

gromd stations in this instance a re  all approximately on a sphere, their distri- 

bution in space is not completely general. However, whenever they depart from 

a plane, the nature of the problem is the same regardless of further specifications. 

The observations a r e  again divided into quads with similar notations a s  

those used previously. Whether four or more ground stations observe simultan- 

eously has again no effect on the derivations. Most of the investigations and 

derivations will be carried out for such networks where at  least three stations 

observe all the targets. A solution will be shown to be singular when, for each 

quad a~acl corresponding satellite group, all points involved (four ground stations 

and all the targets in that satellite group) lie on a specific second order critical 

surface. This applies regardless whether the ground network consists of one 

quad or more, A solution could be also singular due to singularity A) discussed 

earlier, If singularity A) does not exist (this necessarily implies that a satellite 

group needed for a network should not have all its targets on a straight line) then 

t'ne critical surfaces can be computed ( and thus avoided). There a re  no specific 

eovmditio~ns holding for ground stations only which would lead to singular solutions. 

Consequently, with singularity A) non-existent, a solution will be singular if 

certain (or all) stations together with certain (or all) satellite points lie on 

specific second order surfaceqs). However, such eases are not likely to happen 



in practice for the following reasons: 

(a) Distribution of ground stations alone does not induce 

any type of singularity. Since the number of ground 

stations i s  always limited, their distribution presented 

a cause for concern in the f i rs t  chapter; it  is  irrelevant 

in this chapter, however. 

(b) If a network is  singular, it i s  caused by all the satellite 

points lying on certain second order surfaces (together 

with some ground stations). This could seldom happen 

in practice as  the number of targets may be very high; 

thus the probability of all the targets lying on specific 

second order surfaces be very small. 

The investigations in this chapter can be certainly useful when only a small 

number of targets is observed because then it could happen that they a11 lie near 
1 

one or  more specific second order surfaces. 

For  the reasons cited above, the range investigations for ground stations in 

general configuration a re  principally of theoretical interest. They are pre- 

sented here to make the study related to range observations complete. 

- .. 
1 
It could happen that the satellite passes observed from the middle of a ground net- 

work (extending over an a rea  much smaller than a hemisphere) have the lowest 
altitude, while the passes observed near the edges of the network have increasingly 
much higher altitudes. If in appropriate scale, such configuration could be 
approximated by a hyperboloid of two sheets, provided there was not even one 
target at higher altitude observed from the middle of the network and not one 
target of lower altitude observed from stations located towards the edges, This 
case, illustrated in Figure 7, is clearly quite artificial. 



2.2 Range Observations from Four Ground Stations 

in General Confimration 

The basic steps needed for defining the coordinate system (local coordinate 

system) and for obtaining matrix with the ground stations in general configura- 

Lion m~l  the satellite parameters eliminated a re  the same as  those used in section 

IL, 2, The explicit form of matrix i s  given in Table (1.2-2). Similarly to what 

was said there, a network i s  singular or  non- singular if the corresponding x 
matrix i s  singular or  non-singular (the word "singular" used in the same context). 

With  four ground stations denoted a s  1 ,2 ,3 ,4 ,  forming the ground network, 

&e problem can be non-singular if at least six targets a re  being co-observed. Let 

the first five targets be denoted by their coordinates a s  (Xi, Y,, Z ,), i = 1,2,  . . .5 ,  

and let the sixth and any further target be represented as (XJ, Yf,  ZJ). Matrix - 
A is then identical with the matrix represented by Table (1.2-2), with only the 

first row block and non-zero column blocks present. It has six columns and a s  

many rows a s  there are targets observed from the four stations. 

2 , 2 1  - Critical Surface for Four Ground Stations Using Deteminant Approach. 

Matrix x will be singular if any determinant of i ts  (6 x 6) submatrices is  

e q u d  to zero. In such case its row space (or column space) i s  of dimension 

five in general. It i s  assumed that five independent rows in correspond to 

satellite points 1 through 5. If each further row i s  in the row space spanned by 

the above five rows, then all the (6 x 6) submatrices of x are  singular and so - 
. Therefore, A is singular if the determinant of i ts  submatrix x4, corre - 

sponding to targets 1 through 5 and everytargetj,  i s  equal to zero. From Table 

(1- 2-22) it is seen that 

= 0 (2.2-1) 

represents a second order surface in (XJ, YJ ,  ZJ) .  Since a second order surface 

i s  in general defined by nine points, it will be examined what nine points satisfy 

(2- 



When any of (X,,Y,, Z,), i = 1 ,2 ,  ... 5 i s  substituted for QXJ,YJ, Z J ) ,  then 

(2.2-1) holds, since in the determinant two rows are  equal. If the coordiinates of 

ground stations 1 ,2 ,3 ,4 ,  namely (O,O, O),(xz, 0, 0), (%,ya, 0), (x4,y4, z4) axe 

gradually substituted for (XJ , YJ , ZJ) ,  then (2.2-1) also holds since the Past row 

in the determinant contains only zeroes. Consequently, the second order surface 

for  any target j can be determined as  passing through all four ground stations 

and the f i r s t  five targets and the problem with four ground stations is singular 

whenever all the points (stations and targets) are  lying on one second order 

surface. This property was demonstrated also in Appendix 8, where the deter-. 

m i n d  in (2.2-1) was developed in terms of station 4 rather than in terms of 

target j. However, this procedure was extremely long and tedious compared to 

the approach used in this section. It demonstrated, among other things, that 

it is preferable to work in terms of the targets' coordinates. The nume~rical 

computations of a second order surface can be made more easily using the tech- 

nique of fitting such surface to nine points according to the description given in 

Appendix 6, rather than to use the approach of Appendix 8; the numerical 

results in both cases have been found to agree very well, within round-off 

errors.  

From Table (1.2-2), it  appears that singularity A) should be also takers 

into consideration, using the same approach as in the f i rs t  chapter. One can see 

immediately that the same conclusions expanded by taking into consideration 

Z = 0, can be drawn now: singularity A) with respect to station 4 occurs if every 

one of the (corresponding) targets i s  lying either in one plane through station 4, 

o r  in the plane of stations 1 ,2 ,  and3. However, in the case of four ground 

stations, this represents a special case of the global singularity which occurs 

when all the points are  lying on a second order surface; namely, it  represents an 

intersection of two planes: one, which i s  the plane of all the targets and station 

4, and the other which i s  the plane of stations 1 ,2 ,  and 3. Similarly, what 

had been defined a s  singularity B) i s  only a special case of a second order surface 



which would arise under certain conditions fo r  the distribution of points; i t  would 

be again included in global singularity. This can be said for singularity B) even 

when more than four ground stations are involved. With general distribution of 

ground stations (i. e . ,  not lying in one plane) the effect of ground stations can- 

not be separated from the effect of satellite points; for  this reason, singularity B) 

is completely irrelevant in this chapter. On the other hand, singularity A) will 

have to be considered and eliminated separately when more  than four ground 

stations a re  involved; however, no further derivations will be needed in this 

respect, since singularity A) occurs under the same conditions as presented in 

the first chapter expanded by taking into consideration Z = 0 as it was done for 

station 4. When considering stations 1 ,2 ,  and 3 a s  observing all the targets, it 

e m  be summarized as  follows: singularity A) occurs if every one of the targets 

in some satellite group i s  lying either in one plane through the corresponding 

station, or  in the plane of stations 1 ,2 ,  and 3. 

Finally, one very peculiar type of singularity, which could be called "reverse 

s inplar i ty  B)" will be mentioned. I t  i s  mainly of theoretical interest, however. 

Since 214% the four stations observe all the targets, the two se ts  of points a re  

equivdent in that each point in one set  "observes" each point in the other set. 

Thus, all the targets a re  "co-observing" all the stations. If the targets were 

dl lying in one plane, singularity B) would occur if they were also lying on a 

second order curve. Singularity A) o r  singularity C) could not occur, since the 

P'observed'"oints (i. e. , ground stations) do not lie in a plane. Consequently, the 

problem ceold be singular if all the targets were lying on one second order (plane) 

(carve, This could approximately occur in practice if the four ground stations 

were observing the satellite points on two short passes of approximately the 

same altitude. Exactly the same conclusions can be drawn for networks withmore 

than four ground stations. whether all the stations a r e  co-observing o r  not. 



2.22 Critical Surface for.Four Ground Stations Using Canonical Approach, 

The principle of this approach is  the following: in case of singularity A) 

eliminated for  station 4, i. e . ,  in case of the non-singular three column block fo r  

station 4, it i s  always possible to bring to zero all except three rows in this three 

column block by row equivalence operations; these three rows can be assumed to 

correspond to the f i rs t  three targets; then, using column equivalence operations, 

the elements of these three rows in all the (three) remitining columns can be 

brought to zero. Thus matrix has been modified (without having the rank 

changed) in such a way, that it has a non-singular (3  x 3) submatrix in its upper. 

left corner, with zeroes everywhere else in the f i rs t  three rows and columns, 

Had singularity A) occurred, none of these operations and no further analysis would 

have been necessary. Thus, using the canonical approach, singularity A) will be 

assumed eliminated. The following derivation for four ground stations, as  well 

a s  later for more stations, will be based on this assumption. 

The practical way of bringing zeroes to the three column block of station 4 

(and any other station in later derivations) i s  based on the fact that the fourth,  

fifth, and any further non-zero row in this three column block must lie in the 

row space of the f i rs t  three rows which are assumed independent. Consequently, 

any such row, now denoted a s  row j, can be brought to zero by adding to it the pro- 

per linear combination of the f i rs t  three rows. The corresponding coefficients of 

these rows will be denoted a s  kl, k2, b. They can be computed as  follows: 

This is seen directly from the corresponding three column block of matrix in 

Table (1.2-2). The inverse in (2.2-2) exists due to the earl ier  assumptions, The 

same row operations have to be performed on all the columns of matrix (i, e ,  , 

on the entire row j). This will change the j th row in the last three column block 



(by adding to it the same linear combination of the f i rs t  three rows). When this 

is aecsmplished for  all the rows j (i. e.,  for the rows corresponding to targets 

4,5,6, and any further targets), the f i rs t  three column block has the desired 

f o m ,  Bringing to zeroes the f i rs t  three rows in the last column block is  accom- 

plished at once. If there were s rows in the original x4 matrix, its form after 

the above operations would be: 

From. (2.2-3) it  i s  evident that x4 is singular if and only if x4 is singular (i. e. , 

has rank smaller than three). Thus the problem has  been reduced to analyzing A, 

which has only three columns. Analogous reductions will be made for 

wore than four ground stations. 

Next, the rows of A4will be obtained, using the coefficients k. In order to 

solve (2-2-2) ,  the determinant of the matrix to be inverted, denoted a s  D4, i s  

after some algebraic manipulations obtained as  

where 

and where 



The part of row j which i s  located in the last three column block will be denoted as 

r j ;  i t  will have the form (after the row equivalence operations have been per- 

formed): 

where 

23 c 4 = x , - y 4  
Y3 . 

The terms (-D4kl), (-D4k2), and (-D4k3) can be expressed as  

and 



where 

and 

The three expressions in (2.2-6) a r e  all  equal to ze ro  whenever Z j  = 0 (and s o  

when target  j i s  replaced by any of stations 1 ,2 ,3 )  and also if (XI, YJ , Z J )  i s  sub- 

stituted f o r  by (%, y4, z4). Since D4 # 0, i t  mus t  hold that 

L 

kl = k2 = k3 = 0 whenever j - 1 , 2 , 3 ,  o r  4;  (2.2-7a) 

fur ther ,  

k1 = -1, k2 = 0, k, = 0 whenever j r target 1, 

k, = 0, k2 = -1, k3 = 0 whenever j = target  2, (2. 2-7b) 

k, = 0, k, = 0, k, = -1 whenever j = target  3. 

The relations (2.2-7b) can be immediately found by inspection from (2.2-2); 

they foiIow also from (2. 2-6)-(2.2-6c), which thus verifies all  the above derivations. 



The matrix & is  such that it is  composed of the rows r J ,  j = 4 , 5 , 6 ,  ... ; if 

any target beyond targets 4 and 5 i s  denoted a s  a variable point (X, Y ,  Z )  and its 

row by the letter r ,  then z4 can be written as  

Should A, be singular then every row r would have to lie in the row space of 

and r5, assumed independent (they would be dependent if it held that z, = 0, i, e ,  , 

if all the observing stations were lying in a plane which is not true in this chapter); 

namely, i t  would hold for  any row r that 

From the form of (2.2-5) and (2.2-6), it i s  clear  that the row r contains the terms 

of f i r s t  and second order in (X, Y ,  Z) .  Therefore, (2.2-9) expresses the condition 

that the variable point (X, '6, Z )  l ies on a second order surface passing through the 

origin (of the local coordinate system). 

A s  usual, it will be useful to  find nine points through which the seei3nd order 

surface passes and which could in general serve for  i ts  definition (see for  instznce 

Appendix 6). Clearly, whenever (X, Y ,  Z)  i s  the same a s  (&, Y,, 25,) or (X5, Us, % 5 ) >  

then r i s  the same a s  o r  r5 and (2.2-9) holds. Further,  whenever the variable 

point in (2.2-5) - there appearing a s  (XJ,  Yj, ZJ) - i s  substituted for  by stations 

1 , 2 , 3 ,  o r  4 ,  that row becomes a zero row (for the f i r s t  part  in 42.2-5) it is seen 

directly and f o r  the second part  it follows when the conditions (2.2-7a) are consid- 

ered). The same is  t rue when the variable point i s  replaced by targets 1,2, o r  3;  



this folllows directly f rom (2.2-5) and (2.2-7b). Thus, the second o rde r  surface 

defined by (2.2-9) fo r  any target  (X, Y,  2 )  beyond ta rge t  5 passes  through stations 

1,2,3 ,4  and ta rge ts  1 , 2 , 3 , 4 ,  and 5. It  can be concluded that a problem is 

s i n ~ l s k r  whenever all the (four) ground stations and all  the ta rge ts  a r e  lying on 

one second o rde r  surface. This  property has been demonstrated already in 

section 2.21 and in Appendix 8. However, the canonical approach f rom this  

section i s  the most  important as i t  will be  used fo r  networks containing m o r e  than 

four ground stations a s  well. 

2 - 2 3  - Computations of Critical Surface f o r  Four  Ground Stations. 

2 ,231  General Considerations. 

A general equation of second degree in three  variables  (x, y ,  z) can be  written 

as 

Ax2 + IIXy + Gxz + B~~ + Fyz + cz2 + Px + Qy + RZ + D = 0. (2.2-10) 

The so~lutions of this equation can be  represented by 8. second degree surface. If 

the constant t e r n  D in (2,2-10) is equal to zero, the surface passes  through the 

origin of the coordinate system, Some of the fsllo%ving nota~irsnns and descriptions 

are tdren from [4 ] ,  p. 362. The (3 x 3) matrix containing the coefficients of the 

quadratic t e r n s  in (2,2-10) will  be  denoted by the le t te r  A (not to  be confused 

with the coefficient A in the above equation); its f o m  is given as 

The mat r ix  obtained f rom (2.2-10a) and denoted a s  E i s  defined in the following 

manner: 



I ts  determinant i s  denoted by the symbol A , i. e . ,  

If further notations a re  introduced, namely 

'then the equation representing a second degree surface can be written as 

when the surface passes through the origin, its equation reduces to 

A general case to be il.1vmtigated i s  such that both A and E matrices ha!ve full rank. 

Its solution may be either rea l  o r  complex. Of all possible cases,  only those which 

have a real  solution and whose matrices A and E both have full rank are of 

importance in this study. They a r e  presented in Table (2.2-1). The fourth column theare 

has the heading "signs of X's"; since X represents any of the three eigenvalues of 

the above A matrix, this column specifies whether all three X's have the same 

sign o r  not. In the case of an ellipsoid, the signs which a re  the same must be 

positive (otherwise the ellipsoid would be  imaginary). 



Table (2.2L1) 

Description of Pertinent Second Order Surfaces 

The distinctions specified in this table were used in Appendix 4, 

section A4.3, when dealing with solutions of second degree equations of the 

In the present study, equations of the type (2.2-11 a) are obtained with respect 

to the coordinate system in which they were derived, i. e. , with respect to the 

liocd coordinate system. However, in general the points of a network are  given 

in a dilferent coordinate system, called basic. In order to obtain the critical 

surfaces in the basic coordinate system, transformations have to be applied 

bekveen this and the local coordinate system. First ,  the following notations wilI 

be introduced: 

x = E] ... coordinates of a point in the basic coordinate 

system; thus in particular, 

coordinates of the origin of the local coordinate 
X, = Yo ... 

system; 

r;-I ... coordinates of a point in the local coordinate 
X = 

LzJ system. 

Aceording to (A4-4a) - (A4-4c) in Appendix 4, 



where x was identified with X' and P with R, a (3 x 3) orthogonal matrix. This  

formula gives the coordinates of a point in the local coordinate system computed 

from the coordinates given in the basic coordinate system; it is said to transform 

the coordinates from the basic to the local coordinate system. From (2,2-12) 

o r  (A4-4a) it is obtained that 

which is said to transform the coordinates from the local to the basic coordinate 

system. The orthogonal matrix P is made up of the directional cosines pertaining 

to the relative orientation of the two coordinate systems, namely 

cos (X, x) cos (X, Y) cos(X, z) 

P = cos(Y, x) cos (Y, Y) cos (Y,z )  . 
cos (Z, x) L (20s (Z, Y) cos (Z, z) I 

Here X,Y, Z represents the three axes of the basic coordinate system and x, y ,  z the 

three axes of the local coordinate system; thus (X, x) represents the angle between 

the X-axis and the x-axis, with similar description for the other angles. 

The values needed for the transformation equations (2.2-12) and (2,2-13) are 

the vector X, and the matrix P. The vector X, is simply given as  

x1 coordinates of station 1 in the basic X, = I YII ... 
L zlJ coordinate system. 

(This notation should not be confused with (XI, Yl, Z1) from all the other sections 

where the capital letters are  reserved for targets' coordinates and the small 

letters a re  used for stations' coordinates; the capital letters a re  used f o r  stationsf 

coordinates exclusively in the problem of transformation of coordinates between the 

local and the basic coordbna$e systems involving only stations 1 ,2 ,3 ;  in such E. pro- 

blem the targets' coordinates do not appear at all), Thedirectionof thex-axis in 



h 

t e rns  of the basic ooordinate system is given by the unit vector i , where 

Since the x-axis was defined as  the line connecting stations 1 and 2 ,  it holds that 

where 

The z-axis was defined to be perpendicualr to the plane of stations 1 , 2 , 3 ;  a vector 

v in this direction is given a s  a cross  product of a vector in direction from station 

1 to station 2 and a vector in direction from station 1 to station 3, which will be 

writ ten as 

v = (12) x (13) 

with  appropriate vector interpretations. The vector v i s  then computed as 

With  s denoting the norm of v, i. e. , with 

A 

the direction of the z-axis can be given by the unit vector k such that 

i = kos (z ,  ')I 
cos (z, Z )  

where  



Finally, the unit vector of the direction of the y-axis is given a s  

A A A 

since j i s  a cross-product of k with i , namely, 

i t s  components a r e  given a s  follows: 

Consequently, using (2.2-16a) - (2.2-16c) in the formula (2.2-14), the matrix P 

can be written a s  

2.232 Critical Surface Algebraically, in Local Coordinate System. 

The  cr i t ical  surface f o r  four  ground stations h a s  been shown to  be  a seeorsd 

o r d e r  surface passing through all four  stations and (first) five targets.  It could 

be  found f o r  instance by the fitting procedure described in Appendix 6. However, 

it will be  helpful to find the form (2.2- l la)  of this  second o rde r  surface in the 

local coordinate system independently, using the canonical approach. 

To  do this,  it will be necessary to obtain the three  elements of the row r: 

appearing in (2.2-8) o r  (2.2-9), explicitly in t e r m s  of (X,Y, Z ) .  I t  will be done 

using the relation (2.2-5) fo r  r j ,  where j holds f o r  any target  beyond 3. Thus 

f o r  row r ,  corresponding to any ta rge t  beyond 5, the index j will be  simply drop- 

ped everywhere in (2.2-5). The three  elements of this  row will be denoted as rl, 

r2, and 9, SO that 

r [rl r2 r3]. (2. 2-18) 



Using the re la t ions  (2.2-6) together  with (2.2-5), a f t e r  s o m e  algebraic  manipula- 

tions the following resu l t ,  wri t ten  conveniently in  a m a t r i x  f o r m ,  i s  obtained: 

- 1 
M ,  V .  

D4 (3 x 9)(9 xl) 

the e l e m e n t s  of M4 are given f o r  the  f i r s t  row as 

m11 = 0, m ~ a  = ~ 4 %  m13 = -~4D4-A1&(X1-~3)+A2B2(~2-~3)-A3B3(~3-~3), 

m1.4 = 0, m l s  = AlCl(Xl-x3)-AzC2(&-~3)+A3C3(X3-~3), m16 = -A1Q(x1-~3)+ 

"AaDa(X2-~3)-A3Ds(X3-x3), m17 = 0, m18 = - ~ 3 ~ 4 D 4 ,  ml, = x3~4D4-A~ E l  (XI-%)- 

-AzEa(X2-~3 )-A3E3 (X3-~3), 

for  the second row a s  

ma1 = 0, m22 = 0, m23 = -A~&(Y~-Y~)+A~B~(Y~-Y~)-A~B,(Y~-Y~), m24 = ~4D4,  

ma 5 = - Y ~ D ~ + A L  C1 (Y1-~3)-A2C2(Ya-~3)+A3C3(Y3-~3) m26 = - A 1 4  (YI-Y~)+ 

+ A z ~ ( Y ~ - Y ~ ) - A ~ D ~ ( Y ~ - Y ~ )  , m2 7 = 0, m2 8 = -Y3~4D4, m2 9 = Y ~ Y ~ D ~ - A L  El  (YI-Y~)- 

-A~E~CU~-Y~)-A~E~(Y~-Y~), 

and for  the  th i rd  row as 

r n , ~  = z4D4, m32 = -% z4D4, m3 = - c ~ D ~ ~ K ~ B ~ + K ~ ~ - K ~ & ,  m3 = 0, 
Y3 

m, = K1 C1-K2C2+K3C3, m3 = -K1&+K2D2-K3&, m3 = -x2z4D4, 

where new notations have been  introduced as follows: 



x Yl % 2 -- 
1 = 1 r 4 ( z 1  zl y3 ) - ~ 4 1 ,  

kL3) - c4], K2 = (X.2 - ~ 2 )  5 4  ( Z2 
Z2 y3 

K3 = (X3 - x2) [z4( L- L3)  - c4,. z3 z3 Y3 

T h e  column vec to r  V h a s  the  f o r m :  

V =  [ x 2 , X Y , X Z ,  y2, Y Z ,  Z" x ,  Y, Z I T .  

Clear ly ,  f o r  the  rows  r4 and rs it can  b e  wri t ten  in analogy t o  (2.2-19): 

r: z = -IV14v4 
D4 

r4 

where  

and 

w h e r e  

' 2  V5 = [x:, X5Y5, X5 Zs, Y:, Y5 Z5, Z5, XSY Y ~ Y  Z51 T .  

Using the l a tes t  notations, the  express ion  (2.2-9) can b e  wri t ten  as ; ;]= o, 

which g ives  



where 

R~ = r: r2 - r: rz, 

3 1  1 3  R2 = r4 r5 - r4 r5, (2.2-2310) 

% = ri rz - rzri. 

Using the expression (2.2-19) f o r  r ,  it i s  now obtained f rom (2.2-23a): 

where b, b,, ... , b9 can be  determined f rom the relationship, which will a lso be  

useful la ter ;  namely, 

B4 = RM4 

where 

B4 = [h b2 b3 b4 b~ bs b7 be bsI 

([upon inspection of (2.2-19) and (2.2-23a) it i s  seen that (2.2-24a) i s  valid 
3 

w ~ t h  bi = C mjiRj ,  i = 1 , 2 ,  ... , 9, which i s  exactly (2.2-24b)). Since i t  holds 
1=1 

in general that 

9 f 0, 

the equation (2.2-24) can be multiplied by and the resul t  written in a matr ix 
D4 

where, with the usual notations fo r  the elements of A-matrix and a-vector, it 

holds that 



a12 = aa = 1.h 
2 h' 
l b  

a,, = = -" 
2 b,' 

L 
a22= 9 

bl 

& 
%3 = a32= h' 

h 
a33= ' x>l 

and 

The second order surface represented by (2.2-25) - (2.2-25b) i s  then the desired 

form (2.2-lla) given in the local coordinate system. Numerically (within 

round-off e r rors) ,  the same values for  A-matrix and a-vector were obtained as 

those computed by methods developed in Appendix 6 o r  Appendix 8. 

2.233 Practical Computation of Critical Surface. 

The critical surface for  four ground stations can be computed in four steps 

as  follows: 

(1) Transformation of coordinates from the basic coordinate 

system to the local coordinate system of all the points 

(ground stations and targets). 

(2) Computation of the critical surface, given in the local 

coordinate system by (2.2-25), in the canonical form 



including the determination of its center and six main surface 

points; furthermore, computation of an approximate 

distance to the surface from any point beyond the four 

ground stations and the f i r s t  five targets. 

(3) Transformation of all the new points from the canonical 

coordinates to the local coordinate system. 

(4) Transformation of all the new points from the local coor- 

dinate system to the basic coordinate system. 

A mars detailed description and explanation of these four steps i s  appropriate 

at "chis time. 

The formula to be used in step (1) i s  (2.2-12); the values for  X, and P used 

i~ it can be computed from (2.2-15) and (2.2-17). 

The f i r s t  part  of the computations needed for  step (2) can be carr ied out 

using the method presented in Appendix 4, section A4.3. To make the formula 

(2-2-25) representing the critical surface with respect to  the local coordinate 

system complete, the coefficients listed in (2.2-25a) and (2.2-25b) have to be 

computed; this can be done when step (1) has been completed. The formula 

@,2-25) corresponds to (A4-18) in Appendix 4. There,  the local coor- 

dinate system is  called "original coordinate system". In section A4.3, the 

approach to find the kind, size, and shape of the second order surface i s  given, 

which finally leads to determination of the center of the surface and its six 

"main surface points". At the same time, the computation of the second order 

surface yields the values for  x, and R, necessary to determine its position 

md orientation with respect to the local coordinate system. In the second 

part of step (2), approximate distances from some points to the critical surface 

are required. A method to achieve this - with the precision improving when the 

point approaches the surface - was developed and described in Appendix 7. The 

computations of such distances a r e  done in the canonical coordinate system. 

Furthermore, additional points on the second order surface a r e  obtained; they 



correspond to certain projection of the above points onto the surface, as 

specified in Appendix 7. This feature can be useful in examining some nearly 

singular cases, because one can get a fairly good idea how close certain targets 

a r e  to the critical surface. With all the ground stations in a plane such. eomputa- 

tions were unnecessary, since the critical curve in that case could be plotted 

and the distance measured. 

Transformation from the canonical coordinates to the local coordinate 

system i s  also described in Appendix 4 and given by the formula (A4-8). The 

new points to be transformed a re  the center of the critical surface, its six main 

surface points and "projected points", if any. The old points can be also t r m s -  

formed to the local coordinate system and then back to the basic coordinake sjrs- 

tem f o r  checking purposes. 

The transformation of step (4) i s  performed using the formula (2.2-13) 

with X, and P being the same a s  in step (1). 

2.3 Range Observations from Any Number of Ground Stations 

with Three Stations Observing All Targets. 

The stations observing all the targets  will be denoted by numbers 1, 2 , 3  a s  

it was done in the first chapter; also other notations a s  well a s  the arrangement 

of observations in quads will remain the same. matrix for  any number of 

ground stations in general configuration i s  given in Table (1.2-2), section 1. 2 ,  

The analysis of the critical surfaces in this section will be made using the 

same principles a s  those for four ground stations, described in previous sections, 

i. e. , using the canonical approach. 

2.31 Critical Surfaces Using Canonical Approach. 

The same approach a s  in sections 2.22 will be now used with r e spec t to  ail 

the three column blocks corresponding to all stations beyond 1 , 2 , 3  ( i ,  e.  , fo r  all 

except the last  three column block). Each such block will be "elearedl%bgr row 



equivalence operations of all except the f irst  three of i ts  rows. The remaining 

elements in such three rows will be again brought to zero by column equivalence 

operations. With the above row equivalence operations, the corresponding rows 

in the last three columns will be changed. The form of these rows for the f i rs t  

row block (corresponding to station 4), was described in the previous sections; 

they were denoted as rows r j ,  which was later changed to r4 and r, to denote the 

f.surth and fifth row (corresponding to targets 4 and 5 observed from station 4), 

and to  r to denote any further row beyond r,. The submatrix composed of such 

rows r was denoted as Tik. Exactly the same procedure with the same assump- 

tions (i, e . ,  singularity A) eliminated) will be used for other stations a s  well. 

Their submatrices in the last three column block will be similarly denoted as 7i5, 

&, , etc. , where the index specifies to which row block (or station) they refer. 

In malogy to D,, the determinants associated with other row blocks will be 

denoted as D5, D6, ... , etc. After the outlined equivalence operations, the rows 

may be further arranged in such a way that L, &, &, ... , etc., submatrices 

appear in the lower part of this modified matrix. It now has the form: 

which can be written as 



where P is  a non-singular matrix composed of non-singular (3 x 3) subnlatrices 

along the main diagonal and zeroes elsewhere, and where A is given a s  

Due to the form (2.3-1) and the property of P matrix, is  singular if and only if 
- 
A is  singular. Thus, the problem has been again reduced to analyzing a matrix 

with only three columns. There has to be at least three rows in x ,  o r  else 

would be automatically singular without any further considerations. 

The rows in A,, denoted a s  r,, r5, r ,  corresponded to the fourth, f i.fth, and 

any further target observed from station 4; they were given by (2.2-21)1, (2-2-221, 

and (2.2-19) respectively. The rows in Ti5, denoted a s  T4, 7, ... , a r e  cornpuked 

the same way, namely 
7 1 

D5 i s  computed according to (2.2-4) - (2.2-4b) with the coordinates of station 5 

replacing the coordinates of station 4 and the coordinates of the f i r s t  three 

satellites in j5 taking place of the same coordinates in j,; M5 is  computed from 

(2.2-19) through (2.2-19b) with exactly the same modifications a s  above; V,, 



given by (2.2-21a), i s  associated with the fourth target in j5 rather  than in j,. 

Any further row in x5, denoted as  T, is  obtained a s  

where V has the same form as  represented by (2.2-20) and it is  now associated 

with .the critical surface fo r  (the quad of) station 5 rather  than station 4. Any - 
row in will be denoted as  Z it is  given as  

it can be described exactly the same way a s  the row except that all the quanti- 

ties in (2.3- 5) refer  to station 6 rather  than station 5 (including the corresponding 

satellite groups). Similar formulas and descriptions would apply for  any further  

stations. 

Since there a r e  at least three rows in matrix, each station has to observe 

at least three targets (otherwise singularity A) would automatically occur) and at 

least three more targets must  be observed from one o r  more  quads. (When the 

stations were considered lying in one plane at least three quads had to observe 

such additional targets,  while here these targets may be observed by just one 

quad,, so that theoretically one quad could observe six targets and the other quads 

only three targets each.) The problem will be singular if each additional row in 
- 
A is lying in the row space of the f i r s t  two rows, assumed independent. A t  this 

point the discussion will be divided into two cases: case (a), where j, is  

assumed to contain more than four targets,  and case (b), rather  theoretical, 



where j, i s  assumed to contain exactly four  ta rge ts  (otherwise the stations can 

be renumbered so  that station 4 always observes m o r e  than three  targets) .  

Case (a) i s  such that the f i r s t  two rows in A a r e  r, and r5, corresponding to 

t a rge ts  4 and 5 observed by station 4; they a r e  the same two rows a s  those used 

in section 2.232 and given by (2.2-21) and (2.2-22), needed to compute the critical 

surface f o r  station 4. Consequently, the cr i t ical  surface f o r  station 4 in the 

local coordinate syst em i s  given by the formulas  (2.2-25) - (2.2-25b) in which the b 

coefficients can be found f rom (2.2-24b) and (2.2-23b), with the elements of M, 

ma t r ix  given following the formula (2.2-19). At the end of section 2.22, th is  sur- 

face was shown to  pas s  through stations 1 , 2 , 3 ,  and 4 and through the f i r s t  five tar- 

gets  observed by station 4. F o r  station 5, the cr i t ical  surface is represented by 

where P corresponds to any row in &, i. e . ,  to < a s  well. This  surface is seen to 

pas s  through stations 1 , 2 , 3 ,  and 5 and through the f i r s t  th ree  ta rge ts  observed by 

station 5; if the target  corresponding t o  row T i s  substituted fo r  by any of these 

points, then F is a ze ro  row according t o  the same  reasoning which followed (2,2-9) 

at the end of section 2.22. The equation (2.3-6) can be written a s  

where Rl, $, R, a r e  given by (2.2-23b). F rom (2.3-6a) considering (2,3-41, the 

cr i t ical  surface can be given by the formula (2.2-24a),where D, i s  to be replaced 

by D5 and where the b t e r m s  a r e  now computed f rom 



Thus,  the crit ical surface for  station 5 can be given again by (2.2-25) - (2.2-25b), 

using (2.3-7) for  computation of the b-terms. In exactly the same way the cr i t ical  

surface for  station 6 (and any further  station) could be  found; in this case  the b- 

t e r n s  would be computed from 
Bt; = R&. 

This surface passes  through stations 1 , 2 , 3 ,  and 6 and the first three ta rge ts  ob- 

served by station 6, analogous to the behavior of the crit ical surface fo r  station 5. 

Consequently,theproblem is singular if all the ta rge ts  beyond target  5 in j4 

md beyond target 3 in j,, &, etc. ,  a r e  lying on the corresponding cr i t ical  

saadacies; these surfaces can be all computed using (2.2-25) - (2.2-25b) with the 

b t e r m s  found respectively from (2.2-24b), (2.3-77, (2.3-8), etc. All the 

practical computations with respect  t o  each of these crit ical surfaces a r e  the 

same as those described in seckion 2.233. 

i s  such that the f i r s t  two rows in A a r e  r4 and T4, corresponding to 

target 4 from the satellite group j4 (observed by station 4) and target  4 from js. 

If there were some additional ta rge ts  in j,, represented by the row r ,  the 

critical. surface fo r  station 4 would be  given a s  



with the rows r, and F4 given by (2.")  and (2.3-3). This surface would pass 

through stations 1 ,2 ,3 ,  and -4 and through the f i rs t  four targets observed by station 

4 (if the variable point corresponding to row r were replaced by any of h.he first 

seven points mentioned above then r would be a zero row, while for the eighth 

point - target 4 - r would be the same a s  the f i rs t  row of the determinant in 

(2.3-9)). Comparing (2.3-9a) with (2.2-23a), it  i s  clear that the c r i t i ed  surface 

could be represented by the equation (2.2-24a) with the b terms obtained from 

where 

Consequently, such critical surface fo r  further targets in j, would be given again 

by (2.2-25) - (2.2-25b) with the b coefficients from (2.3-10). For station 5, $Brae 

critical surface can be represented by the relation (2.3-9) where the row r i s  

replaced by the row i; this row is associated with any target in j5 beyond target 

4. This critical surface i s  seen to pass through stations 1 ,2 ,3 ,  and 5 and through 

the f i rs t  four targets observed by station 5. It i s  given by the relation 

Considering (2.3-4), this leads again to the formula (2.2-24a) where D, is to be 

replaced by D5 and where the b terms are  now computed from 

Thus the critical surface for station 5 i s  given again by (2.2-25) - (2.2- 25b), 

using (2.3-13) for computation of the b terms. The same formulas would also 

apply for the critical surface for station 6, except that the b terms would be corn- 

puted from 
- 
B6 = z ~ .  (2, 3-14) 



This surface passes through stations 1 ,2 ,3 ,  and 6 and through the f i rs t  three 

targets observed by station 6, a s  it was already seen in case (a). One could 

contbsaue the same way for any further station. 

The problem would then be singular if all the targets beyond target 4 in j4 

(however, such targets a re  not assumed to exist in this case), beyond target 4 

in j,, beyond target 3 in j,, etc., were lying on the corresponding critical surfaces; 

these surfaces can be all computed using (2.2-25) - (2.2-25b) with the b terms 

found respectively from (2.3-lo), (2.3-13), (2.3-14), etc. All the practical com- 

putations with respect to each of these critical surfaces a re  again the sarne as  those 

described in section 2.233. 

Problem with Critical Surfaces Coinciding. 

2,3211 General Considerations. 

The 9-vector V was given as 

It wi'81 be now partitioned into two parts, according to absence o r  presence of any 

2-coordinate; namely, 

Any (1 x 9) vector B contained nine b terms; this vector was subscripted accord- 

ing to ithe corresponding station number; furthermore, in case (b) it was denoted 

as Ee The following derivations will be made for case (a); considering the criti- 

c d  surface for station i, the B vector i s  written as  

It wi l l  be partitioned correspondingly to vector V as 



and 

Matrix M, and any further matrix M, (corresponding to the same station i as B,) 

will also be partitioned; from the form of M4 it is seen that 

which i s  of rank three; (3 x 4) matrix M: i s  much more  complicated. SLmilarly, 

I t  has been assumed that z4 # 0 and z, # 0. From (2.3-17a) and (2.3-17b) one can 

see that 

M: z, = M: z,. (2. 3-18) 

Since B,, B, were computed a s  

B4 = RM,, B, = RM, 

and consequently 

B: = RM:, B: = RM:, 

i t  also holds that 

B: z, = B; z,. 

b b b  
But then -Z anda mustbe  the same for  station 4 and any station i. 

h Y  '1' b,' b, 



Clearly, all these results hold in case (b) as well. Consequently, the parts  of 

A-matrix and a-vector from (2.2-25), such a s  

nlust be the same for all critical surfaces in one network. This property served 

as a useful check in numerical computations in both case (a) and case (b). 

A plausible geometric interpretation of this result is such that each of 

the critical surfaces intersects the plane of station 1,2,  and 3 (i. e . ,  plane 

z = 0) in a second order curve and that all these second order curves coin- 

cide, Necessarily, this one second order curve, common to all the critical 

surfaces, passes through the stations 1 ,2 ,  and 3 (further stations and all 

targets are in general assumed not to be lying in the plane z = 0). An illus- 

tration of this =suit is presented in Figure 6. 

The critical surface for any station was given by (2.2-25) as 

which can be also written as 

here the subscripts have been omitted. Whenever non-zero A-matrix and a-vector 

for b;vo second order surfaces are the same, these two surfaces coincide. In 

t e rns  of the equation (2.3-20) this means that whenever i t  holds that 

then, due to 



Figure 6 

ILLUSTRATION OF CRITICAL SURFACES: Stations 1, 2, 3 observe all 
targets;  stations 4 and 5 together with their satelli te groups j4 and j, 
a r e  on the second order  surfaces S, and S g ,  respectively; stations 4 ,  
2,  3 a r e  on the second order  intersection curve of surfaces & and &.  



it d s o  holds that 

B4zt = Biz4 

a d ,  therefore, all the terms in A-matrix and a-vector for station 4 and station i 

are the same (see what was said following (2.3-19)). Consequently, if (2.3-21) 

holds, then the critical surfaces fo r  station 4 and station i coincide. 
- - -  

Next, it will be shown when (2.3-21) can hold. Let 1 , 2 , 3  denote the f i r s t  
- - -  

three targets observed by station i. Assume that station i and targets 1 , 2 , 3 ,  lie 

on the critical surface of station 4. This i s  expressed by the relations of the 

type (2.3-20); namely, 

For the critical surface of station i it holds that 

since points i and T,2,3 always lie! on this surface as  i t  was shown for both case (a) 

md case (b) in section 2.31. Considering (2.3-20), it follows from (2.3-23b) and 

(2,3-23a) respectively: 

These last relations can be written in matrix form as 

Denoting 



and 

the above equations can be written as 

and 

o r  

and 

provided N is  non-singular. Using the relation (2.3-19), i. e. , using 

in (2.3-24a), it follows that 

this togehter with (2.3-24b) gives 

which i s  exactly the equation (2.3-21). 

As the last step in this derivation, it  will.be proved that under the earlier 

assumption of singularity A) eliminated, the above matrix N is indeed non-singular, 

If N were singular, it  would have to hold that 



Factoring out z,, Zi, Z,, Zg from the above determinant (all assumed non-zero), 

transposing it and subtracting its f i rs t  row from the other three rows, (2.3-25) 

can be written, using the development by the first row, as  

- - -  
However, this is the equation of a plane passing through the points i, 1 ,2 ,3 .  But 

since singularity A) was excluded for the f i r s t  three targets, the above relation 

e m o t  hold and so I N \  # 0, which completes the discussion. 

It can be concluded in general, that if the critical surface of one station in 

a network contains another station and its (first) three targets, then the critical 

surfaces of both stations coincide. Next, suppose that target 4 lies on the critical 

sudaces  of both station 4 and station i. The same conclusion would hold for tar- 

get (observed by station i) replacing station i in (2.3-23b) and the following deri- 
- - - 

vatiions, provided ZT # 0 and provided the four targets (1,2,3, and z) are  not 

lymg in one plane. Consequently, if four targets lying on one critical surface a re  

also lying on another critical surface, then these two surfaces in general coincide. 

This can be explained by the fact that all except four values in A-matrix and a- 

vector for different critical surfaces in a network a r e  the same from the beginning, 

iiv kthout any conditions. 

Also this result has a plausible geometric interpretation. Since all the criti- 

cal surfaces (one corresponding to each station beyond station 3) intersect in a 

second order curve in the plane of stations 1 , 2 ,  and 3, they can be considered to 

have five points in common in that plane (which is equivalent to having five param- 

eters in common). Consequently, four more points in general configuration a r e  

needed (none of them in that plane) for each critical surface to be determined. 

If d1 four of them were lying in one plane, the second order surface would 

degenerate into two intersecting planes. If these four points lie on the 



same second order surfam, then the corresponding critical surfaces coincide, 

since in general nine points are  needed for  the determination of a second order 

surface. This also implies that if all ground stations observe the same four 

targets then all the critical surfaces coincide and such a network i s  singular only 

if all i ts  points (stations and targets) lie on one second order surface. 

2.322 Critical Surface if All Ground Stations Co-observe. 

Should a network be singular, all the targets would have to lie on the eorre-  

sponding second order surfaces. If all the stations co-observe, all the existi% 

groups of targets coincide. Therefore, for singularity to occur, all the l,argets 

(in general more than four) would have to be lying simultaneously on all the crtti- 

cal surfaces. But then all these surfaces would coincide as  demonstrated above, 

Consequently, with all the ground station co-ob serving the problem i s  in general 

singular only if all the points of a network, i. e. all the stations and all the tar- 

gets, lie on one second order surface. One exception i s  "reverse singularity B)", 

which occurs whsn all the targets are  in a plane on a second order curve, This 

type of singularity i s  described in section 2.21. (Singularity A) could occur only 

under similar conditions as  described in 1.34, namely, if all the targets lay i? 

a straight line. However, this is only a special case of "reverse singulariQ B)'" 

when a second order curve degenerates into two coincident lines.) If all the tar- 

gets lie in a plane containing any ground station the solution is singular whether 

all stations co-observe o r  not; however, for the reasons given in section 1 , 3 4  

this i s  not singularity A) in the usual sense for all stations co-observing, eve3 

though geometrically it  i s  closely related to it. To show that the solution i s  

singular in this case one can argue that an "observing" set  of points lying in a 

plane (here all targets) contains a member of the "observed" set of points. Under 

this condition the solution i s  singular according to the f i rs t  chapter. This is :he 

only other exception to the rule stated above. 

Naturally, with all the points of a network lying on a second order surface, 



my arrangement of observations (e. g. , exactly three stations observing all 

the targets, replacing of certain stations, o r  finally "leapfrogging") makes an 

d j u s b e n t  singular, a s  it differs from the case when all stations co-observe 

only by absence of certain observations. A geometric illustration of such a 

codclfignration is presented in Figure 7. 

2 - 3 3  - Independent Derivation of Singularity 6 )  When All Ground Stations Are 

A s i s ~ i n g  z = 0 for all ground stations, important simplifications will take 

place in all the formulas leading to and including M matrix which f i rs t  appeared 

in (2.2-19). For  instance, if station i is considered, some of the simplifications 

taking place are: 

(cl is obtained by substituting xi ,  y, for  q, y, in c,); 

where the a-coefficients become also simplified. Finally, it is obtained for M 

where the coordinates of targets 1 ,2 ,  3 present in the a-coefficients necessarily 

refer to the targets observed from station i. With these simplifications, it is 

obtained for any row r in the submatrix of x: 



Figure 7 

ILLUSTRATION O F  CRITICAL SURFACES: All stations observe all 
targets ;  all stations and a l l  targets  a r e  on a second o rde r  surface,  



Since Z # 0 was stipulated from the beginning, this row will be a zero row if 

This is an equation of a plane in X, Y, Z which passes through the f i rs t  three 

targets observed from the quad of station i; upon substituting the coordinates of 

these three targets for  X, Y, Z, the equation (2.3-28) can be shown to hold after 

some algebraic manipulations. Therefore, for each further target lying in a 

plane with the f i r s t  three targets, the corresponding row in Ti; matrix is a zero 

row. Suppose that station i observes two o r  more targets not in plane with the 

f i rs t  three targets. It i s  seen from (2.3-27) that all such rows a re  linearly 

dependet, since the (3 x 1) vector on the right-hand side is the same for all targets 

observed from the same station. Consequently, only one non-zero row r can be 

obtained from one station when the corresponding target is off-plane with respect 

t o  the f i rs t  three targets. Thus, the necessary condition to prevent singularity C) 

was obtained: at least three stations must observe off-plane targets. 

lMext, the sufficient conditions for singularity C) to be eliminated will be 

derived. Suppose that only stations 4 ,5 ,  i observe their targets off-plane. Let 

the corresponding non-zero rows in matrix be denoted as r j ,  rk, rm; they a r e  

assoei ated with targets j ,  k, and m. Denote further 

T = a , X +  +Y + % Z  + a,, 

which is non-zero for  any variable point being off-plane with respect to the f i r s t  

three targets in its satellite group; consequently, 



- 
The submatrix of A, formed by r j ,  r,, r,, is seen from (2.3-27) to have the from: 

If this matrix i s  singular or  non-singular, then matrix and consequently 

matrix i s  singular o r  non-singular (singularity A) had been assumed eliminated), 

Since the f i rs t  matrix in (2.3-29) i s  non-singular, L is singular only if the second 

matrix is singular. But this occurs exactly when stations 4 ,5 ,  i lie on a seeond 

order curve with station 1 ,2 ,3 ,  as one may see from (1.3-2), section 1. 32, 

Therefore, the necessary and sufficient conditions for singularity 6) eliminated 

are: there must be (at least three) off-curve stations making off-plane observa- 

tions. But this is exactly the result of section 1.33. 

2.4 Brief Discussion Concerning Replacing of Stations. 

The prinoiple of replacing of stations when the ground stations are 

in general configuration i s  simpler, but similar to the same discussion with all 

the ground stations in a plane. The simplicity of this problem for most eases 

consists in the fact, that four ground stations -could be sufficient to form the 

fundamental unit (provided all the points do not lie on one second order surface), 

Consequently, any three "old" stations co-observing with a new station contribute 

to the expansion of a non-singular network; the sufficient conditions that it be so 

are: no target in the new satellite group is lying in a plane with the three 

observing stations, and the new station is  not lying in a plane with these c,ew 

targets. The f i rs t  condition guarantees the unique determination of each new 

target using the three unique stations (they are part of a non-singular network), 



%-ad the second condition guarantees the unique determination of the new station 

from these targets. 

More sophisticated considerations a re  necessary in one special case which 

w i l l  be only discussed without expressing it analytically. Suppose that the 

smd le s t  non-singular network consists of six stations. This may happen when 

each quad observes only four satellite points. A s  mentioned previously, the 

necessary condition to have non-singular is  that there be at least three 

additional targets in a network beyond three targets per quad. When the ground 

stations a re  not lying in a plane, such three targets may be distributed over 

one, two, o r  three quads; if they belong to three quads, then a fundamental 

unit consists of six stations; otherwise it consists of four o r  five stations and 

in each of these two cases some three stations a r e  observing all the targets. 

I n  the case of six stations forming a fundamental unit, replacement of observations 

rn ay occur. After the first replacement, the sufficient conditions to expand the 

network, mentioned previously, will apply also in this case. It is  assumed that 

station k replaces station 3, as it was done in section 1.41. matrix with 

general distribution of the ground stations for this replacement was presented in 

a I .  4 1 ) .  Clearing the column blocks in this matrix from the non-zero 

elements beyond the first three rows in each row block up to the row block 

"'From s ' q s  done in exactly the same way as  described in section 2.22. In 

t5e three column block for station k, "clearing" has to continue also for  the 

rows "From s": using the same f i r s t  three rows of the row block "From k". 

However, i t  is seen from Table (1.4-1) that the three coefficients k,, k,, and 

k3 for each of these additional rows will again contain second degree terms in the 

asoordi~nates of the corresponding target (in j,). Consequently, after this step is 

completed, some second degree terms will have been added to all the rows 
* I 4  r rom s" of the last three cblumn block. Therefore, the nature of the rows 

"From s" in this block is the same a s  that of the previous rows before the row 

equivalence opera t i~ns  were started (each row contains some second degree 



terms).  Finally, the "clearing" of the three column block for  s leads to some 

coefficients k,, k,, k, and to rows r in the last  three column block which again 

contain second degree t e rms  in the coordinates of the corresponding targets.  

Consequently, the structure of matr ix and of its A submatrix in particular 

after these operations i s  the same a s  when three stations were observing all "te 

targets. As a matter  of fact, the only rows r in which changed a r e  the rows  

corresponding to station s. Consequently, the critical surfaces would be again 

represented by second order surfaces; for  stations 4 through k these surfaces 

would be the same a s  when three stations observed all the targets,  while for 

station s the critical surface would be different. 

2.5 Numerical Examples and Verifications of Theory. 

Example 1. In this example, points with their coordinates given in Table 

(2.5-1) a re  used to define a second order surface. 

  able (2.5-1) 

Coordinates of Nine Points to Define a Second Order Surface 

The resulting surface, obtained numerically according to the method of A p p e ~ d l x  



6, is a hyperboloid of one sheet with the coordinates for  the six main surface 

points and the center given in Table (2.5-2). Next, point 4 is added to the 

nine points of Table (2.5-1) so  a s  to form a quad with points 1 , 2 , 3 ;  an adjustment 

is made f o r  this quad observing points 11 through 16; the coordinates of point 

4 are varied which results  in six cases. With the points 11-16 a s  targets 

$here a r e  no redundant observations present in the adjustment. This experiment repre- 

sents category 1. Adding one more  target at the location + b  brings one redundant 

observation into the adjustment. With the same six cases  a s  previously, this 

experiment represents category 2. The result of the adjustment of the six cases  

in both categories a r e  given in Table (2.5-3). From this table it can be verified 

that the problem is  singular if all the points lie on one second order surface. 

The best results  a re  obtained for  station 4 occupying the center of this surface. 

Adding one further satellite point to the network improves significantly all the 

non- singular cases. 

Table (2.5-2) 

Coordinates of Six Main Surface Points and Center of the 

Hyperboloid of One Sheet Defined by Nine Points 



Table (2.5-3) 

Results of the Adjustment of One Quad 

in General Configuration. 

Example 2. In this example six ground stations and twelve satellite positions 

a r e  used for observations in three quads, so  that no redundancy i s  present. The 

x and y coordinates of stations 1 through 5 a r e  given in Table (1.5-1) of section 

1.5; for  station 6, they a r e  taken such a s  presented in case (1) of Table (1,s-7), 

namely 

x, = 340,000, y, = 790,000. 

The z-coordinates of these six stations a r e  given a s  follows: 

The three targets a re  divided into groups, j,, j,, j,, exactly the same way as it 

was done in (1.5-3) of Example 3, section 1.5. The observations a r e  taken 

according to  five different arrangements. The f i r s t  three arrangements, denoted 

a s  (a), (b), (c), a re  such that three stations observe all the targets. They are 



presented as follows: 

1 2 3 4  ... jl 

(a) 2 3 4 5  ... j, 

2  3  4  6 ... j3 

The next two arrangements use replacing of observations; they are denoted as 

(pi) md (ac). The arrangement (ab) represents an intermediate step between 

(a) a d  (b); namely, station 4  replaced station 1  in (b) for observations of ja. 

Thus, 

1 2 3 4  ... j, 

1 2 3  6 ... j , .  

Similarly, arrangement (ac) is  an intermediate step between (a) and (c) ; namely, 

station 5 replaced station 2 in (a) for observations of j,. Thus, 



The critical surfaces fo r  (a) were computed using all the points appearing In 

(2.5-1) except for  target 182 of the group j,. The critical surface for j, w a s  found 

to be a hyperboloid of two sheets. Target 182 was then chosen to be exactly on 

the critical surface; it remained in this position also for all the other arrange- 

ments. In both (b) and (c), this location of target 182 happened to be near the 

critical surface for j,, namely 290.5 m and 4,841.2 m,  respectively; these df s- 

tances were computed using the method of Appendix 7. A s  a matter of f act the 

chosen location of target 182, denoted as  182', was computed as  a "projeettoc"' 

of the original point 182 onto the critical surface of j, in arrangement (a); its 

coordinates are  given as: 

This constitutes category 1 in the present example. Next, target 182 was chosen 

to be located at  x, of the critical surface for j, of (a) and it was denoted as 182,- 

This location gave the distances to j, of (a), (b), and (c) as 104,604 m, 198,231 m, 

and 4,336m, respectively. The coordinates 182, were found to be 

This experiment falls in category 2. In the third experiment, target 182 was 

chosen to be located at the point +2a  of the critical surface for  j3 of (a) and it 

was denoted as  182,. The distances to j3 of (a), (b), and (c) were computed as 

104,604m, 13,787m, and 187,874m, respectively. The coordinates of 182, 

a re  given as: 



This part constitutes category 3. Finally, target 182 was chosen to be located at 

the point + 5  a of the critical surface for j, of (a), and it was denoted as  182 5a. 

The distances to j, of (a), (b), and (c) were computed to be 418,416 m,  290,624 m,  

and 439,917 m, respectively. The coordinates of 182 5a were obtained as 

This experiment falls into category 4. The results of all arrangement in all 

categi~sies are given in Table (2.5-4). 

Table (2.5 -4) 

Results of Experiments in Example 2. 

The results in this table indicate for the arrangements (a), (b), (c), for  which 

the critical surfaces were computed, that the problem is indeed singular when 

target 182 i s  on or  very near i ts  critical surface. The best results were obtained 

in category 4 where target 182 was the farthest apart from the critical surface 

of j Further significant improvement i s  to be expected when additional targets 



are  added to the present system (with d.f. = 0) and/or when more than four  

stations observe simultaneously. 

Example 3. In category 1 of this example all the points of a network are 

chosen to be lying on one second order surface, a hyperboloid of one sheet, Al l  

the arrangements in all categories of this example are  be the same as in Example 

2. The points of the network lying on the above second order surface consist 

of stations 1 ,2 ,3 ,4 ,  having the same coordinates a s  in Example 2 and targets 

151, 152, 161, 171, and 183, given in Table (1.5-I), and further of the points 

from the same table whose coordinates have been changed; the latter are given 

in Table (2.5-5), as  well as  the center and the six main surface points of the 

Table (2.5-5) 

Coordinates of Some Points Related to Second Order Surface of Example 3 



critical. surface (coordinates of all the points of interest were printed to contain 

six digits). The lengths of i ts  two real axes in order of magnitude and of the 

imqinary  axis are  given as  540,361 m, 246541 m,  and 436680 m, respectively. 

In category 2, point 182 is chosen to coincide with x,. In category 3, it  is chosen 

to coincide with the point - 2b, and in category 4 to coincide with the point -5b; 

its coordinates in these two categories are  given a s  

respec:tively. The adjustment results of the five arrangements in four categories 

are given in Table (2.5-6). From this table it  can be verified that the problem 

must be singular for any arrangement of observations when all the points of a 

network are  lying on one second order surface. In general, results of this 

e x m p l e  are  somewhat inferior to those of Example 2. In particular, category 2 

is very weak. Here again, much better adjustment is to be expected by adding 

o! redmdant observations. I t  can be illustrated in the following experiment. 

Table (2.5-6) 

Results of Experiments in Example 3. 

Arrangement 



Example 4. This example i s  exactly the same as  Example 3, except that all 

the six ground stations are co-observing. The results for T r  (N-I) in category I1 

through category 4 are given respectively as 

These values indicate highly significant improvement for all non- s ingular cases as 

compared with Example 3,  due to the fact that all the ground stations are co-observ- 

ing. Also, singularity due to all points lying on one second order surface is 

clearly evident. 

Example 5. In the f i rs t  experiment of this example, all the ground stations 

are  again co-observing and all the points of the network are lying on one second 

order surface. In contrast with Example 4 where the critical surface was quite general. 

and where the points were generally distributed on that surf ace, the second order sen-- 

face is now represented by a sphere (centered at the origin and having the radius equal to 

1,000,000 m) andmost of the points a re  symmetrically distributed. Altogether, there are 

eight ground stations (numbered a s  51, 52, . . . , 58) and eight targets (numbered 

as  501, 502, . . . , 508), all lying on the sphere. Their coordinates are given in 

Table (2.5-7). This configuration yields 

T ~ ( N - ' )  = -.2x 10' 

from an adjustment. Clearly, the problem is singular. 

Next, the location of station 58 i s  varied. Altogether, there are nine Isca- 

tions occupied by station 58, denoted as 581 through 58,. Point 58, i s  located at 

the center of the sphere, points 5a2 through 58, inside the sphere, point 58, on 

the sphere, and points 58,, 58, a re  located outside the sphere. All the other 

points are unchanged and all the stations are  again assumed co-observing. The 

varying coordinates of station 58, its distance from the sphere (on which all the 

other points are  lying) and T r (N-''1) obtained from an adjustment are presented 



Table (2.5-7) 

Coordinates of Sixteen Points of Example 5. 

in Table (2.5-8). The results from this table again verify that a singular 

solution i s  obtained when all the points a re  lying on one second order surface 

(here sphere) and that very strong solutions can be obtained with all stations 

tco- obsierving . 



Table (2.5-8) 

Nine Experiments Corresponding to Location of Station 58. 

Point 

581 

582 

583 

584 

5 8s 

5 86 

5% 

588 

5 89 

x 

0 

0 

0 

0 

0 

0 

0 

0 

0 

~r (N-I) 

135.5 

137.0 

148.3 

169.7 

207.0 

263.5 

-. 6 x 108 

319.4 

287.3 

z 

0 

0 

0 

0 

0 

0 

0 

0 

Y 

0 

- 200,000 

- 400,000 

- 600,000 

- 800,000 

- 900,000 

- 1,000,000 

- 1,100,000 

- 1,200,000 

Distance 
from Sphere 

1,000,000 

800,000 

600,000 

400,000 

200,000 

100,000 

0 

100,000 

0 1 200,000 
1 



2 .6  Conclusions 

Perhaps the most important theoretical result in this chapter is that when- 

ever all the points (ground stations and targets) of a network lie on one second 

order surface the network is necessarily singular. An illustration of such a 

eodig~-mlion appears in Figure 7. 

Some special cases of singular solution arise when all the targets observed 

bjr a certain station (they can be in one or more satellite groups) a re  in a plane 

which contains this station (mostly called singularity A)), or when all the targets 

of a nehork  are  in a plane on a second order curve (this was called "reversed 

sii.kdarity B)"). When all its points lie on a second degree surface, the network 

is s i w d a r  even if all the ground stations co-observe; this i s  the only case of a 

sin@ar problem when all the stations co-observe, except for the special cases 

when all the targets in a network a re  in a plane containing one ground station, 

or when they are  all on a second order (plane) curve. Naturally, when all the 

wints are  on one second order surface, the network is  singular no matter how 

the obsemations a re  arranged ("leapfrogging", etc. ). 

When only a limited number of stations co-observe, the situation is some- 

w b ~ t  more complicated. In practice, four stations forming quads may co-observe 

a set of targets. With three stations observing all the targets, it was found that 

;?m adjusbent of range observations is  singular if for each quad the stations and 

the corresponding targets lie on a specific second order critical surface. In 

sections 2.23 and 2.31  the method is given to compute such critical surfaces 

explicitly, All these critical surfaces intersect in one second order (plane) 

curve conLaining the above three stations. This geometric property is  illustrated 

in Figure 6. If the special singular cases due to singularity A) or "reverse 

s i ~ h r i t y  B)" do not exist the network has a non-singular solution if there is at 

least one (satellite) point located outside the corresponding critical surface. 

When utilizing the concept of station replacement, it was found that besides 



the above two special cases singular solutions would again be associated with 

specific second order surfaces. However, these were not expressed explicitly, 

In this case sufficient conditions for non-singular networks stipulate that after 

an expansion of a non-singular network the new network is still non-sine~lar il 

the targets of any "new" satellite group do not lie in a plane with the "old" three 

stations and that the fourth, "new" station does not lie in one plane with these 

targets. 

The main results of this section a r e  summarized in Table (2.6-1). 

For the reasons mentioned in section 2.1, geodetic networks a r e  not Iikely 

to be singular when the ground stations a r e  generally distributed in space. How- 

ever, when the number of redundant observations is small o r  zero, an adjust- 

ment may be sometimes quite weak. Adding extra observations can signiificantly 

improve the quality of the solution. Several computer runs indicated that some 

very good results can be expected with more than four ground stations c o - o b s e w i ~ ~  



Table (2-6- 1) 

Necessaw and Sufficient Conditions do Avoid Singular So%utions 

When Ground S%ations A r e  Generally Distributed 

- - - - - - -- - - - 

Necessary Conditions to Sufficient Conditions 

lated singularity) 

sumed non-existent in 

The same a s  the 

1, 2 ,  3 on a second 
curve containing t 
three stations. If 
points outside this 

critical surfaces th 

I 

, 
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APPENDIX 1 

EFFECT OF ADDITIONAL OBSERVATIONS ON VARIANCE-COVARIANCE 

MATRIX OF THE SAME SET OF PARAMETERS 

It is a plausible stalement that a weight-coefficient matrix Qx of the 

born parameters X "improves" with additional observations, and if 

these are  affected by random errors coming from the same population as  

the original set of observations, the variance of unit weight being thus 

the same, then also the variance-covariance matrix Cx of the unknouln 

pratmeters "improves". The word "improves" is used to describe the 

fact, that Q: - Qx is a positive (semi-) definite matrix, denoted also 

as Q: - Q, 2 0 ;  here Q: stands for the case when only original obser- 

vatiom were considered and Qx when also additional observations were 

incl~~ded in the least squares adjustment. This also means that 

T ~ ( Q ; )  ' T r ( Q x ) *  

This last expression can indeed be interpreted a s  an improvement in a 

weight coefficient matrix Qx due to the additionaf. observations. 

The asserted statment will be proved using "A method" of the least squares 

adju.stment, such a s  treated in [5], since this method has been used through- 

out in treating ground stations - satellites range observations. For the 

original group of observations, which can be considered as consisting of the 

minimum. number of observations and thus d.f. =0 (degrees of freedom), it holds 

that 

and 

V1 = AIX + L1 (Al- la )  



where V1 stands for the residual vector, A1 for the coefficient matrix s f  

the observation equations (Al-la), L1 for the constant vector, Pa, for  ilse 

coefficient matrix of normal equations and P1 for the weight matrix, 

assumed to be positive-definite, all for this group, denoted by the index ,. 
When all the observations a r e  included, it holds that 

and 

with similar description of this group. It is assumed that P1 and P, , 
which compose the P matrix, a r e  uncorrelated. Furthermore, 

Thus, it follows from (Al-2) that 

where 

similar to (Al-lb). 

The normal equations for the original observations a r e  

with I& given as 

Ul = A: P, Ll 

and for all the observations 



Now, two cases arise. In the f irst  case, N: i s  considered to exist, in 

which ease N, i s  of full rank and no constraints for the parameters are 

needed. This, in practice, could be equivalent to fixing of at least six 

coordinates for range observations alone, which would mean the the corre- 

sponding rows and columns are deleted from N,. 

The second case i s  of practical significance for fundamental networks 

using range observations alone. The rank deficiency of both N, and N is  such 

a network i s  six in general which means that a t  least six constraints have to be 

used to make an adjustment possible. Then the augmented coefficient matrix 

of normal equations is  assumed to have the full rank. For fundamental net- 

w o r k s  exactly six linearly independent constraints a re  used. 

1. According to [5],when Nl i s  invertible the weight-coefficient matrix 

for the parameters is given as  

Q: = N; 

while for all the observations it holds that 

M&ing use of (61-3), this last equation can be developed as 

Since P, , N, a r e  both positive-definite here, (P: + Az N: &)" is positive- 

defnnite and S positive (semi-) definite, where 

WW;ke to N1 positive definite and N2 positve (semi-) definite, N and so also 

N-I = QX a r e  positive definite matrices. 



where 

Thus, 

Tr(Q,) = ~r (Q:) - T r  (S) 

indicating an increase in accuracy due to added observations to the original 

set. 

2. Using six constraints m o n g  the parameters, the following system 

is to be solved when all the observations a r e  considered: 

where the parameters can be rearranged in such a way that 

where C, is a (6 X 6), non-singular matrix. Then 

X, = -c,"c,x, - C ~ W ,  (AX-4) 

from which 
- 

Qx, - TQ, TT (A.1-5) 

where Q, is positive (semi-) definite and T = C: Cb . 
With A, , & partitioned in the same way a s  C, it holds for the obser- 

vation equations where all the observations a r e  included, that 



Upon plugging X, from (Al-4) into these equations, the following observation 

equations from which the parameters X, have been eliminated, a r e  obtained: 

This can be written a s  

where 

As  stated before, due to the constraints, the solution of such a system 
N 

now exists, whether for the original observations (to which A, is  pertaining) 

o r  for all the observations included (to which is pertaining). This system 

is a,mlogous to the one investigated in Part I., and so the conclusions a r e  

the s m e ,  namely 

Q& - Q x b  is positive (semi-definite) (Al-6a) 

NOW, analogically to (Al-5), i t  holds that 

From (A1-5) and (Al-7) it follows that 

which is positive (semi-) definite, due to (Al-6a). Thus, 



which together with (Al-6b) yields 

the same result a s  in the Part I., indicating an increase in accuracy due 

to added observations to the original set ,  while preserving t h e  same 

parameters a s  unknowns. 

These and similar aspects a re  considered in different publications, for  

instance in [ 1 2  1. An interesting treatment connected with the adding of 

observations and/or constraints to an original set of observations is presented 

in [11 1. 



APPENDIX 2 

BEST FITTING PLANE 

An equation of a plane can have the f o m  

( r -  ro) .  n = 0 ,  

r e  n - ro. n = 0 ,  

where r, = (%,yo, zo) represents a radius-vector to a certain point in the 

pla.ne,r = (x, y, z ) ~  a radius-vector to a general point in the plane and 

n = (a, b, c ) ~  a unit normal vector to the plane, in which case ./a2 + b2 + c2 = 1 

must hold. In absolute value,ro n = d represents a perpendicular distance 

of the plane from the origin, and since r n = x a + y b + z c, the equation 

of a plane is  written as 

In the following each of the points to which the plane is fitted will 

be considered as lying in the plane after the adjustment. Thus the deviations 

from the plane will be regarded a s  due to "errors" in the llobservations", 

which will be represented here by the actual Cartesian coordinates of each 

points, leading thus to three "observations1' per point. Denoting all the 

adjusted values (parameters, observations) by superscript a, it will hold 

for a point i: 

x," aa + y," ba + zia ca + da = 0 (A2-la) 

and 

+ (ba)2 + ( c ~ ) ~  - 1 = 0. (A2-lb) 

There will be as  many equations of the type (A2-la) as there are  points 

involved, say r ,  and one equation of the type (A2-lb). This corresponds to 

the mathematical structure of the general L. S. method with constrains 

such as described in [5 1, namely 



and 

where Xa are  adjusted parameters, which in the present case are  (aa: b", 

cay da )T ,  and La adjusted observed quantities, here (x,", y t ,  z,"; x,", JT;, 
a a 

2,"; . . . ; x i ,  y, , z?; . . . )". In the above mathematical model, (A2-2a) 

i s  represented by r equations of the type (A2-la) and (A2-2b) by one equation 

(A2- lb). 

After the liaearizdion, (A2-2a) and (A2-2b) become 

where all the notations of [5 1 are  preserved, namely: 

X r dX.. . u corrections to the u approximate values of parameters, x'. 
V . . . n residuals, corrections to the n observed quantities, IL~. 

r a r  
A = , -  . . . (r x u) matrix of coefficients 

-axJo,  b 

B = yaF] . . . (r x n) matrix of coefficients 
LaL O t b  

r 2 G  ' 
C = ,  , . . (s x u) matrix of coefficients due to the constraints ,_ax J , 
W = F (XO, L~; .  . . r - vector of misclosures 

W, = G (9) . . . s - vector of misclosures due to the constraints, 

In the present case the dimensions a re  as  follows: 

r . . . number of poi ts to be used for fitting 

u = 4  . . . for  parameters a, b, c, d 

n =  3 r  . . . number of "observables",i. e. x ,y ,  z coordinates of the points used 

s = 1 . . . one constraint, namely (A2-lb). 



Accordingly,using the structure (A2-la) and (A2-lb) the matrices and vectors in 

(A2--3a) and (A2-3b) will be: 

with a', boy cO, do a s  approximate values of the parameters.  Furthermore, 

the weight matrix P will be taken as a unit matrix, a s  there i s  no reason why 

some coordinates should be weighed more heavily than others; also, with 

this P = I, the adjustment will eventually render C (distance from the plane)2 

to be a minimum such as  demonstrated in A2.2, a condition which i s  indeed 

desirable. 

A2.1 Transformation of General Method 

Adjustment into the "A Method1' 

From the mathematical structure for  the "A method", F(Xa) - La = 0, 

it follows for  e r r o r  considerations that A dX - d L = 0, o r  

d L  = AdX, (A2-5) 

where d L can represent e r r o r s ,  coming from a certain population, which 

affect L" observed quantities. The variance-covariance matrix of d L, which 

is  identified with the variance-covariance matrix of LD, denoted C ,by i s  a 

measure of uncertainties in the observations. The weight matrix P i s  then 

taken as 



The observation equations 

V = A X + L y  

subject to the condition 

vT P V  = min., 

yield for the parameters: 

as presented in [5 1. 

From the mathematical structure for  the general method, 

F (xa, La ) = 0, it follows analogically that 

-BdL  = AdX. (A2- 8) 

Here C,,, = B CLb BT, which using the same P as  in (A2-6), gives 

CBdL = B p3BT. (A2-9) 

Linearization of the general method model gives 

- B V = A X + W .  

Subject to the condition 

vT P V  = min., 

this yields for  the parameters: 

as derived in [5 1. 
If the notation 

5 = (B p-l BT)-' 

i s  introduced, (A2-11) reads as  

X = - ( A T  f; A)-' Fw. 



B~st this is the result which will be obtained from (A2-lo), if the equations 

are written as "transformed observation equations" 

assd with the associated weight matrix, F; in other words, the equations 

v = - B V  = A X + W  (A2- 14 a) 

are given weights - 
= (XBdL)-', 

while in "A method" equations V = AX + W were given weights P = (Ed,)'. 

It remains to be shown that in the general method 

so that the correct use of "transformed observation equations" (A2-14) 

with the weights (A2-15) be verified. It holds for the general method that 

m d  !, consequently, 

On the other hand, making use of (A2-14a) and (A2-12), it holds that 

- -- vT P v = vT B~ (B P-I B~)-I  B v 

which proves (A2-16). 

As a conclusion, it follows that whenever it appears advantageous 

(reducing of dimensions etc. ), the "transformed observation equations" and 

appropriate weights may be used for "A method" adjustment as given by 

( a - 1 4 a )  and (A2-15). The A matrix is thus the same in both methods and 

so is the constantvector, W 2 L. Also all the results, namely X, VT PV,  

G9 C, (as seen from (A2-11) and (A2-13)) a re  the same whether the general 

method or "A method" with the "transformed observation equations" is 

used, 



A2.2  "Transformed Observation Equations" 

in the. Best Fitting Plane Problem. 

A 2 . 2 1  General Considerations. 

Due to the special form of the B matrix in (A'L-4), matrix 

will be particularly simple. Since P = I, then B P " B ~  will be of dimensions 

(r r) with zeroes as off-diagonal elements. Furthermore, the diagonal 

elements will be all equal to (a?" + (bO)" + (cO)" which should be close to one 

(in the f i rs t  iteration and in last several iterations - when the iterative 

procedure is  used - it should be equal to one for  all practical purposes). 

Thus 

and 

with 

with A, X, W ,  C, W, the same as in (A2-4). 

Next, the vector ? will be interpreted. The original vector Ti was 

composed of three vectors, such as 

connecting the "measured point i" with its "adjusted position". Then n * vi 

is the projection of this vector on n, normal to the plane, o r  the (perpendicular) 

distance of the existing point i from the plane. Due to 7 = -BV and due to 

the special form of the B matrix it follows that 



Thus the absolute values in represent distances between all points in 
N N N  

consideration and the best fitting plane. vT P V  thus represents C (distance 

from plane)" and it i s  a minimum, which i s  the desired property. 

8 2 - 2 2  Approximate Values of Parameters.  

The starting approximate values of the parameters may be 

obtained by fitting a plane to the f i r s t  three points, which have r l ,  r2, r3 

as radius-vectors. Formulas to be used: 

(a) r12 = r2 - rl ; r13 = r3 - rl 

(c) d = -rl. n = -r2 . n = -r3 - n. 

These values of a,  b, c,  d a r e  used for  the f i r s t  iteration. 

The misclosure for  point i, w,, will be according to (A2-4): 

where the superscripts have been omitted. Because of (c), wl = w2 = 
- 

w , = 0. Let P E (Z, j;, E)T denote the projection of P = (x, y, z ) ~  on the 

plane. Thus 

where / $ 1  i s  the distance from the plane through 1 ,  2, 3,  to point P. Since 

is in the plane, it must hold: 

( a x  + a2&) + ( b y  + b2L) + ( c z  + c2L) + d = 0 ,  

But the right side i s  exactly the misclosure f o r  point i ,  a s  seen from 

(.A2--187), while (a2 + b2 + c2) = 1. Thus L= - w, and the distance of any 

point from the plane through 1 ,  2, 3 i s  determined by the absolute value 

of its rnisclosure, / wi  / , in the f i r s t  iteration. 



A 2 . 3  Summary of Formulas and Sequence of Operations for 

the Best Fitting Plane Program 

The program for the best fitting plane will use the "A method" 

adjustment procedure such as  described in 15 1, taking advantage of the 

particular features inherent in this problem, namely "transformation of 

observation equations" (as shown in section A2.2). Iterative procedure wi:l 

be used until the values of the parameters  (or  C p w )  remain practically 

constant. Summary of the steps in this adjustment: 

1) Data consists of (x,y,  z) coordinates of all the r points used 

for the best fitting plane. The coordinates may by scaled, 

depending on their nominal values. 

2) Using (first) three points, compute a', boy coy do as outlir~ed in 

(a), (b), (c) of A2.22. 

3) Carry out the "A method" adjustment with constraints, where 

the observation equations have been "transformed1', by plugging 

for  standard matrices: 

with the unit matrix (r x r )  a s  the weight matrix. 

4) Iterate as  long a s  desired; at each step the values in W ,  C, 

W,, change, due to changing values of the parameters.  



Since A (and P) does not change, N and N-I matrices a r e  the 

same throughout. 

5) The final absolute values of the residuals are  (perpendicular) 

distances of the points from the best fitting plane. The 

final Cpvv represents C (distance from plane)2. In practical 

computations the average distance from the best fitting plane 

was used as  a reasonable measure as to the closeness of 

all the considered points from a plane. 

6 )  The last step is optional. I t  makes it possible to compute the 

adjusted "observations", i. e. , the projections of all the considered 

points on the best fitting plane. I t  can be shown that they are  ob- 

tained from 

b - 
xia = xi - av,  

N 

z,. = zp - CV,  

- - 
where v,, corresponding to the i th element of V, and a, b, c, a r e  

all taken from the last  iteration. All these projected points can 

be further transformed into the "local coordinate system" (which has 

the first point at its origin, the second point on its x-axis and the 

third point in its x y  plane), using the procedure outlined in 

section 2.231, in (2.2-12) through (2.2-17). Necessarily, all the 

projected points are  in the x y  plane of the local coordinate system. 

Using the procedure of section 1.322, it can be determined whether 

they are  all lying on o r  near a second order curve. Since they 

are  given in the x y plane of the local coordinate system, the basic 

and the local coordinate systems of section 1.322 now coincide. 



APPENDIX 3 

CRITICAL CURVE IN LOCAL COORDINATES AS OBTAINED ANALYTICALLY 

BY FITTING SECOND ORDER CURVE TO STATIONS 1 THROUGH 5 

A general second degree curve such as ellipse o r  hyperbola has five 

parameters to be determined, namely X O ,  yo specifying its position, 

specifying its orientation and a ,  b determining its size and shape. These 

five unknowns can be solved for from five equations which may be furnished 

by five distinct points lying on the curve. It will now be shown that fitting 

of the second order curve to the stations 1 through 5 (which lie on the 

critical curve a s  it was shown in the part following (1.3-2)) will furnish 

the same A, a as expressed in (1.3-5) through (1.3-5c). 

For the proof, the same local coordinate system will be chosen, 

having station 1 at the origin and station 2 on the x axis, stations 3, 4, 

and 5, being generally distributed in the x, y plane. The equation of a. 

second degree curve can be written as 

Usingthe fact that the station 1 lies on the curve yields k = 0 . Upon 

division by g,, (assumed non-zero) (A3-1) becomes: 

Assumption g,, # 0 is reasonable, since, of the stations 1, 2 ,  3, any one 

can be chosen a s  the origin of the local coordinate system and any one as 

determining the direction of the x-axis. In the matrix notation (A3-2) 

becomes 
x T ~ x  + x T b  = 0 

where 



md where B, b are  analogous to A, a of (1.3-5). Since station 2 lies on the 

curve, ( m  , 0 ) can be plugged for (x ,  y ) in (A3-2), giving bl = -% , upon 

which it becomes 

bZy2 +2b,xy + bzy = x ( x 2  - x ) .  

This last equation should be satisfied for stations 3, 4, 5, yielding thus three 

egua.tions in three unknowns, namely 

The last step consists of solving for bs , bG , b2 from (A3-3), for 

which the inverse of the ( 3  x 3 )  coefficient matrix will be used in the form 
- - 
all Q21 a31 

1 
D 
- L: 0'22 a s  

Q23 as- 

where D represents the determinant of the coefficient matrix and aid, the 

eofactor of its i j  th element. Thus, 

where it can be shown that with the notations of (1.3-4a) through (1.3-4c): 

Furthermore, 



1 b,, = - [-w (q - x5)&(x2 - x3) - YS(XS - x~)%(x,  - 4) - ~ 4 ( &  - &)x5(xZ - X3 -, 
c Y3 

After some algebraic manipulations, it is seen that the expression in brackets 

of (A3-4a) is equal to B, the one of (A3-4b) to x3C - y3A and the one of 

(Ae-4c) to - a x 3  C + %y3 A + yz B . Thus, besides bll = 1 and b, = -a 

i t  also holds that 

which a r e  exactly the same values a s  those for A, a in (1.3-5b) and 

(1.3-5d). 

Thus, fitting of the second order curve to the ground stations 1 through 

5 is equivalent to determining the critical loci for any further g rowd 

stations causing singularity B ) to occur. 



APPENDIX 4 

COhlPUTATION OF CANONICAL FORM OF SECOND ORDER 

(HYPER-) SURFACE, GIVEN EXPLICITLY 

-44.1 Preliminary Transformation of Coordinates. 

Whether dealing with the n-dimensional, three-dimensional o r  two- 

dimensional spaces, the equations transforming the coordinates of a vector 

from one basis into another a r e  essentially the same. In the subsequent 

derivations only orthonormal bases will be considered. If X 1  denotes an 

array of coordinates of a vector in a new basis and Y an a r ray  of 

coordinates of the same vector in the original basis, the following relation 

holds : 

Y = R X '  (A4 - 1) 

where R is  an orthogonal matrix whose i j  th entry is equal to the dot 

product of the i t h  basis vector in the original basis and the j th basis 

vector in the new basis, Y and X being written a s  column vectors. 

Should the (coordinate) vector X I  representing a physical point P, 

emanate from the origin of the new coordinate system (with the axes in 

the direction of "new basis vectors1') which is different from the origin 

of the original coordinate system, then Y is to be written a s  

where X and Xo , both in the original coordinate system, represent the 

radius-vector of the point P and the radius-vector of the origin of the 

new coordinate system respectively. (A4-1) is thus written as 



where R can be written a s  

Here t, , a column vector, represents the i t h  "new basis vector" in ",he 

original coordinate system, and is orthogonal to every ti vector, j ti I . 
In particular, three and two-dimensional spaces will be of main 

interest here. Thus, for the three-dimensional space, when the origianal 

coordinate system has the axes represented by unit vectors (orthonormal 
I /  

basis) i, j, k, and the new system by i , j , k : both being the right- 

handed coordinate systems, (A4-2) can be written as 

indicating that for the orthogonal ( 3  x 3 )  R matrix, it holds that 

R = [ t l  t2 t3] (A4-4b) 

- 

where 

X - X o  = 

cos (i i I) cos (i j I) cos (i k 7 
c o s ( j i l )  c o s ( j j l )  c o s ( j k ' )  

cos ( k i  j cos (kj') cos (kk') 
- 

Analogous relations will hold for the two-dimensional space, i. e .  , plane, 

with the k, k 1  coordinate axes eliminated and angles measured counter- 

clockwise a s  to be compatible with the above system. If a! denotes the 
/ I angle between the axes represented by i and i (or j and j)  in this 

order, then a s  counterparts to (A4-4a) - (A4-4c) there will be: 

- - 

cos (i j ') 

cos (j j ') 

- 
cos (i i 5- 

t, = cos (j it) 

- *' -1 

L 

cos (k j ') 
- 

, t, = , t3 = 

cos (k i - 

cos (i k ) I 
cos (j k6) 

I 
cos (k k')  1 
- - 



with 

- - 
cos a sin a 

x - X ;  = I  
- -sins cos% I 

.- - 
cos a 

- s i n a  / - - -, 

A4.2 Canonical Form of Second Order (Hyper-) Surface. 

As a starting point in this discussion, the second degree (hyper-) sur- 

face will be considered such a s  

where A matrix, a vector and constant term c a r e  given explicitly, x 

being the coordinate vector of a variable point. 

A new coordinate system, called canonical, is  desired such that after 

a transformation of coordinates, the equation (A4-6) will be  of the form 

I 
where x is the coordinate vector of a variable point in the canonical 

coordinate system, and h is a diagonal matrix 

Sim.ilarly to (A4-2), i t  holds that 

X - Xo = R X I ,  

0 1 

I 
x = X; + R X  



where x, , origin of the canonical coordinates, and R are  as yet unknown, 

Since R is an orthogonal matrix, x '  can be expressed from (A1-8) as 

which plugged into (A4-7) gives 

Denoting 

for which 

A =  R ~ M R ,  

(A4-9) becomes 

Once M is known, it will be possible to determine A and R matrices, 

In order to determine M matrix and x, vector, comparison between (A$-6) 

and (A4-11), expressing the same surface, will be  made, taking into account 

that the equation (A4-6) can be multiplied by any constant k, a s  yet ud<ngbwn, 

This gives raise to the following relations: 

and 

-2Mx0 = k a  , 

X J M X O - 1  = k c .  

Substituting (A4-12a) into (A4- 12b) gives 

xo = - & ~ - ' a  , 

(ALP- 12a) 

(A4-1%) 



which has a unique solution for any second degree (hyper-) surface with 

non-singular A. Upon substituting (A4-12a) into (A4-12c), the expression 

is obtained, which substituted into (A4-12a) gives 

Whenever the (hyper-) surface contains the origin of the coordinate system 

to which (A4-6) refers,  called here the original coordinate system, then 

a: = 0 as it can be seen from (A4-6); (A4-14) with (A4-15) then become 

and 

whilie (A4- 13) remains unchanged. 

Although this approach and notations a r e  somewhat similar to the 

derivations presented in [I], Annex 54,  it is different in that here the 

(hyper-) surface is given by an equation such a s  (A4-6) rather than by a 

set of given (errorless) points. 

To compute A, R from (A4-10a) o r  (A4-lob), standard procedures for 

findiw eigenvectors and eigenvalues of a rea l  symmetric matrix, which 

are always real ,  can be used a s  outlined in [6], Chapters 19 and 21, o r  

[ T I ,  Chapter 9. The solution for (A,, 1, , . . .)  in (A4-7a) is obtained 

by solving 

and the matrix R in (A4-3) is obtained by solving for (t, , tz ,  . . .) vectors 

from 
( M -  I X I )  ti = O 



for every i ,  subject to the condition that each ti has a unit norm, 

However, due to M = kA , eigenvalues and eigenvectors for A nzatrix 

may be computed, from which A and R a r e  easily obtained. If 
- - 

AA = diag. ( A ,  , A 2  , . . . ) and RA = (El , , . . . ) constitute the 

eigenvalues and eigenvectors of the A matrix, then 

and 

From the equation (A4-7) i t  i s  seen that 

where ai represents the length of the i th axis in the canonical coordinates. 

Direction of this axis with respect to the orignial coordinate system is 

given by the corresponding vector ti . 
For computation of eigenvalues and eigenvectors of a real  symmetric 

matrix A (or M), an iterative method such as Jacobi method can be 

advantageously applied, namely when digital computers a r e  used; it is 

described in [8], pp. 487-492. However, when working with three and txnio- 

dimensional spaces, eigenvalues can be quickly found in closed form by 

solving for the roots of third and second degree equations,respeelively~ 

Such procedure may be desirable when a digital computer is not available, 

and is described in detail in the next sections. When this approach and 

the Jacobi method were both used and compared for checking purposes, the 

results agreed to six decimal places in practically all investigated cases, 



Note: Due to (A4-13) from which - 

it follows that 

1 - - 1 T 

k 
- xof  AX^ - c = - tZxo a + C )  , 

and since by (A4-16a) 

it fi.nally holds that 

A4.3 Canonical Form of Second Order Surface 

(in Three-Dimensional Space). 

As already mentioned following (A4-13), it will be assumed that A is 

of full rank, i. e. I A I # 0, in which case none of its eigenvalues can 

be 0; in addition, it will be assumed that A # 0, where A is the 

determinant of the "augmented A matrix", described in section 2. 231. 

Thus, of all the rea l  cases, ellipsoid, hyperboloid of one sheet, and hyper- 

boloid of two sheets will be dealt with. As the f i rs t  step leading to a 

canoslical form of a second degree surface expressed by (A4-6) in three- 

dhensional  space, i. e. , a s  

the eigenvalues of A will be computed and then used in equations of type 

(A4-16a) and (A4-17). This leads to solving for the roots of a cubic 

equation, procedure used for practical computations which will be described 
- 

in detail. For obtaining eigenvalues of A, denoted a s  X , X , , X , 



will be solved, which amounts to solving 

- - -  
where p, q, r a r e  all  real.  Moreover, A 1 ,  A,, L, will  be all. real: 

since A is a real  symmetric matrix. If a , ~  denotes an i j  th entry of 

A matrix, the values of p, q, r can be computed according to [6], p. 151, 

as follows: 

Upon substitution 

(A4-18a) becomes 

x3 + a x  + b  = 0 ,  

with 

and 

both real, If the notation 



i s  introduced, then due to the fact that a l l  three roots a r e  real,  c can 

be only 

c = O  (A4- 19a) 

The condition (A4-19a) means that a t  least two roots will be equal and 

(A4--19b) that the three real  roots will be unequal. With the notations 

and 

the solutions of (A4-18c) are:  

A + B  + A - B  '- 

x2 = - -  2 2 
Y' -3 

A + B  A - B  
- 

x3 = - - 
2 2 ,i -3 9 

as presented in [4], p. 93. 

Whenever conditon (A4-19a) occurs, then A  = B  and 



However, due to round-off e r r o r s ,  this condition will not be fulfilled 

exactly and so  only (A4-19b) will be of practical interest when using digital 

computers. First, a constant k will be introduced such that 

Due to (A4-19) and (A4-19b) it  holds that 

and 

A and B thus become: 

where 

Since z, and z, a r e  complex conjugates, 

holds, where 

and thus 



With the following notation 

and 

meaning that (& was restricted to the interval 0 < 4, < v ,  zl and 2, will 

become: 

and A, B will then be 

where 

both positive due to the restriction on 9. 



To conlpute Q,the formula 
b 

@ = arc  tg L K / ( - ~ ) ]  

will be used. Finally, 

A + B  = 2 e  

and 

from which 

Consequently, from (A4-20): 

All the expressions needed to compute XI, x,, x, from (A4-26) are 

given as  follows: 

e ,  d . . . . . . . .  in (A4-24a), (A4-24b); 

p .  . . . . . . . . .  in (A4-23) 

a. . . . . . . . . .  in (A4-25) 

k . . . . . . . . . .  in (A4-21) 

( c  1 . . . . . . . . .  in (A4-22) 

a, b . . . . . . . .  in (A4-18d), (A4-18e) 

p, q, r . . such a s i n  ( ~ 4 - 1 8 a ' ) .  

Finally, using (A4-18b) the eigenvalues of A a r e  found: 

The eigenvalues fo r  M can then be found using (A4-16a) together with 

(A4-27) a s  being 

= k X f ,  i = 1, 2, 3. (A.4-28) 

Next, eigenvectors of A, which a re  the same a s  those of M according 



t o  (A4-16b), will be found. They will be  again denoted by the le t te r  

t i ,  i = 1, 2, 3, and represented by a column vector with three entires.  

They will be computed by standard procedures outlined in r 7  !, Chapter 9. - 
Namely, fo r  an eigenvalue Xi, a corresponding eigenvector subject to  the 

condition of having unit norm, accomplished by scaling,will be computed 

( A -  l X , ) t i  = 0. 

This  relation represents  three equations in three unknowns, the unknowns 

being the coordinates of t, vector,  which, however, has  the rank two 
- 

(since JA - I h i  1 = 0); thus only two equations of (A4-29) will be used, 

one coordinate of t, being chosen arbitrarily.  In the present  case  the 

first two equations of (A4-29) will be used and the third coordinate of t, 

as ytet unscaled, se t  as tr, = 1. With aiJ a s  the i j  th entry of A, D ~ w i l l  be 

computed a s  

and .the f i r s t  two coordinates of t a s  yet  unsealed, computed f rom the 

two equations of (A4-29) according t o  the formulas  

The scale factor  

S* = + + 1 

will  be used to compute 



which are  the coordinates of an eigenvector t,, associated with the 
- 

eigenvalue A,. All three eigenvectors arranged a s  columns in a (3 x 3) 

matrix constitute the orthogonal R matrix presented in (A4-4b). 

In canonical coordinates,points at a distance a, in both directions with 

respect to the origin on the i coordinate axis, which a re  the end points of 

the ith second order surface axis,will be called a pair of "main surface points, " 
In (A4-17) and (A4-16a) it was shown that a, = l/m where XI = k Xi. 
There a r e  six such main surface points, a pair for each coordinate axis, 

which together with the center of the surface, coinciding with the origin 

of the canonical coordinate system, and the name of the second order surface 

give a good idea about it. Thus, in canonical coordinates, the center of the 

surface and the six main surface points have the coordinates respectively: 

In the original coordinate system, the coordinates of these points will b, corn- 

puted according to  (A4-8) a s  

plugging the above seven coordinate vectors for  x' and taking 

according to (A4-13). 

In the forthcoming discussion the kind of second order surface wi l l  be 

determined, namely whether the investigated case is: 

(a) an ellipsoid 

(b) a hyperboloid of one sheet 

(c) a hyperboloid of two sheets. 



If the values of X i  such as computed by (A4-28) are  arranged in the 

descending order of magnitude, then for  all three values being positive the 

kind of surface i s  (a), for X3 < 0 it is  (b) and for A, < 0, A, < 0 it is  (c), pro- 

vided all the remaining eigenvalues X are  positive. If in the case (a) the letters 

a, b, c denote the semi-axes in order of magnitude, all real,  then 

When in the case (b) the letters a, b denote the real semi-axes in order of 

meni tude and c the imaginary semi-axis, then 

If finally in the case (c) a denotes the real semi-axis and b, c denote the 

imaginary semi-axes in order of magnitude, then 

If the renumbering of q, A, and corresponding t, i s  carried out such a way that 

f o r  the above semi-axes "a" corresponds to the index ,, "b" to the index ,, 

"e" to the index ,, then also the six main surface points will have a similar 

plausible interpretation as  the above semi-axes a, b, c. This appears to 

be convenient and helpful in visualizing the surface and it was included in the 

program dealing with second order surf aces. 

Note: There are  other ways to determine the kind of second order surface. 
- 

First, due to the fact that Xi, i = 1 , 2 , 3  a re  the eigenvalues of A,  it holds that 



which can also serve as  a numerical check. Since in the present diseu ssion 

c = 0 (due to the fact that the surface passes through the origin of the 

original coordinate system which is actually the "local coordinate system"' 

in the main discussion), (A4-14a) holds, namely 

- - - 
Under the earl ier  assumption of non-singular A, none of XI, A,, AS, is 

- 
zero. If all three of A ,  a re  positive, A is  a positive definite matrix and 

k >O for each non-zero xo. Thus also M i s  a positive definite matrix, 

since by (A4-12a) 

M = k A .  

- 
If all three of A, a re  negative, A is a negative definite matrix and k <O 

fo r  each non-zero xo. Consequently, M is again a positive definite matrix, 

This shows that not all three of X i  can be negative and thus not all three 

axes a, b, c imaginary (this would represent an imaginary ellipsoid m d  it 

would not pass through the origin of the "local coordinate system", which 

is real). Thus in the two above cases the surface is  (a), a (real) ellipsoid, - 
If A,, i = 1 , 2 , 3  have different signs, so do A,  and both A and M are  indefinite 

matrices. Suppose f i rs t  thatXI 70 ,  X,>O, hB< 0; then I A  / <0. 

If now 
k >O, 

then 

A1 7 0 ,  A2>0, X,<o, 

which represents (b), a hyperboloid of one sheet; 

also 

( A  l k < 0 .  

On the other hand, if 

k <O, 



ahen A, < 0, X2 < 0, X3 > 0 (before renumbering) which represents (c), a 

hyperboloid of two sheets; also, 1 A 1 k > 0. Next, suppose that 

Similar results will hold, from which it  can be concluded, together with 

the preceding part: 

if \ A  \ k > O ,  it i s  case (a) or  (c); 

if I A  I k <O, it i s  case (b). 

The above criteria have been used in the existing program for second 

order surfaces. Further check may be used, considering the determinant 

of the "augmented A matrix", denoted as  A: 

if A < 0 it is case (a) or  (c); 

if b > 0 it is case (b). 

A4.4 Canonical Form of Second Order Curve. 

This section will be similar to the section A4. 3, but much simpler, 

because a plane (two-dimensional space) will now replace the three-dimensional 

space considered earlier. Here also A matrix and "augmented A matrixf1 

are assumed to be non-singular, which i s  expressed by IA I = J # 0 

and h # 0, using notations of (1.3-3b) and (1.3-3c). Thus, only ellipse 

and hyperbola will be delt with. Again, in the f i rs t  step,leading to a canonical 

form of a second degree curve expressed by (A4-6) in two-dimensional space, 

i, e ,  , as 

xTAx + x T a +  c = 0, (A4-30) 

the eigenvalues of A will be computed and then used in (A4-16a) and (A4-17). 

This leads to solving for roots of a quadratic equation similar to the type 

(A4-18) in three variables. Now the relation 

- I X I - A \  = o 



leads to the equation 
- 
X 2  - (all + a22) + I A 1 = 0 

where 
2 I A  1 = a11a22 - a129 

and where a i j  denotes the i j th element of the symmetric A matrix. The I;viio 

roots of this equation are  obtained as  

- a,, + a, + 
/ /a , ,  + ap,\' 

X1 = 2 \ 2 )  - \ A \  

and are  again both real. Then the eigenvalues for M can be formed using 

Next, eigenvectors of A, being the same as eigenvectors of M,will. be 

found; they are denoted as t1 and t, each being a column vector with two 
- 

entries. For an eigenvector ti, associated with the eigenvalue Xi,the matrix 

equation 

will be solved. Here again,one of the coordinates of ti will be chosen 

arbitrarily since the two equations of (A4-31) are  not independent. The 

condition of unit norm for ti will be then used for scaling. Thus the 

second coordinate, as yet unscaled, will be chosen as ti; = 1 and the 

f i rs t  equation of (A4-31) will be used to compute t;, namely 

Then 



wil l  be used to compute 

and 

These a re  the coordinates of an eigenvector ti, which together with the 

other eigenvector will constitute the (2 x 2) orthogonal R matrix, presented 

in (A4-4b). 

Analogous to section 4.3, the "main curve points" will be obtained, 

from which the curve can be drawn. Thus, in canonical coordinates, the 

center of the curve and the four main curve points have the coordinates 

respectively: 

here again = 1 In the original coordinate system, the coordinates 

of these points wil l  be computed according to (A4.8) a s  

plugging the vectors of (A4-32) for  x '  and taking 

according to (A4-13). 

'ef the values of Xi, such a s  computed by (A4-28), a re  arranged in descending 

order of magnitude, the second order curve will be (a) an ellipse if both A,  

md X2 a re  positive, and (b) a hyperbola if A, > O  and X2 <O. If in the case 

(a) the let ters  a, b denote the semi-major and semi-minor axes respectively, 



If in the case (b) the letters a, b denote the real  and imaginary semi- 

axes respectively, then 

If the renumbering of a, , Xi and corresponding t, i s  carried out so that adthe 

(first) axis l1 a l1 corresponds always to the index , and the (second) 

axis "bll to the index 2, then the ellipse o r  hyperbola can be drawn from the 

four main curve points without further  investigations; such renumbering w a s  

included in the program dealing with second order curves. 

Note: Similar to what was said for  the three-dimensional cases,  here 

and 

since c = 0 (due to curve1 s passing through the origin). Again, if X1 and Xa are 

both positive o r  negative, M is a positive definite matrix and X1 , X2 are both 

positive, characterizing an ellipse. Also, I A I > 0. Thus,not both Xl 2nd A, 
- - 

can be negative (andboth semi-axes a, b imaginary). If X1 > 0 and X2 < 0, 

then both A and M a r e  indefinite and consequently X1, X2 have different 

signs, characterizing a hyperbola. ~ l s o  ,I A \ < 0. So it  can be concluded: 

if \ A  I > 0 the curve is an ellipse, and 

if \ A  \ < 0 the curve i s  a hyperbola. 



APPENDIX 5 

SOME SPECIAL CASES OF SINGULARITY B) 

5 3  

The singularity of the last three column block in A such as shown in 

Tablie (1.3-1) can be caused by some special relations which were not treated 

section 1.32. Only a few will be demonstrated here a s  an illustration of 

spacial eases which may result from configurations among the ground 

stations not dealt with previously, such a s  two straight lines. For  the sake 
G 3  

of sjinplicity, the last three columns of A matrix in Table (1.3-1) will be 

called here as "a", I%", "c" columns and each ground station's contri- 

bution will be limited to one row only, as all the other rows for that 

skt ion a r e  the same. These new columns a r e  presented in Table (A5-1). 

Table (A5-1) 

Representation of Columns a, b, c Associated with A Matrix 

The following simple cases will be illustrated: 

1. Column "a" equal to zero. 
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2. Column "b" equal to zero. 

3.  Column "cT' equal to zero. 

4. Column "b" being a (non-zero) multiple of column "a". 

As stated in (1.2-8) and assumed throughout, xz f 0 and y3 # 0 .  

When Column "a" contains only zeros, it must hold that 

which is possible only if some of the I ' i "  stations have y = 0 anid a11 the 

res t  of the "i" stations have x = x3. This represents a case vi4th all 

the ground stations lying in two straight lines, one passing through the 

stations 1 and 2, i. e. , coincident with the x - axis (representing y = 0) 

and the other passing through the station 3 perpendicular to the first line 

(representing x = x3 = const.). Thus, the case 1. represents hvo 

perpendicular lines. 

When column "b" contains only zeros, the relation 

must hold, which means that a part of the "i" stations has y = 0 and 

the remaining part has y = y3. The first  line is again coincidenk with 

the x-axis while the second is parallel to it, passing through the station 3 

(representing y = yg = const. ). Thus, the case 2. represents hvo parallel 

lines. 

When column "cT1 contains only zeros, it must hold that 

x3 (xi - y,,) (xi -x2)  = 0 ,  i = 4, 5, ..., 

which occurs if a part of the "i" stations have 



representing a straight line through the station 1 (origin) and the station 

3, while the remaining part has to satisfy x = ~ z ,  representing a 

straight line through the station 2 ,  perpendicular to the line connecting 

stations 1 and 2 ( x  - axis ). Thus, the case 3. represents two inter- 

secting lines, which have the property, that a connecting line between two 

of stations 1, 2, 3 (one lying on the f i rs t  and the other on the second line) 

is perpendicular to one of those two lines. 

Finally, if column "b" is a multiple of column "aT1, the following 

relation holds : 

where it is assumed that c # 0 (otherwise it would be case 1. ). It is also 

assumed that for at least one station, say the station 4, y4 # 0 and y4 # y3 

(otherwise it would be again case 1. ); the same station has to have m # x3 , 
otherwise the above relation would not hold. Thus the station 4 has a general 

location and the above relation is valid for a part  of stations having y = 0, 

representing a straight line through the stations 1 and 2, while for the other 

part, having y # 0, the following holds: 

It represents a straight line through the stations 3 and 4. Consequently, 

case 4. represents two (intersecting) straight lines with no further condition. 



APPENDIX 6 

CRITICAL SURFACE IN LOCAL COORDINATES AS OBTAINED NUMERICALLY 

BY FITTING SECOND ORDER SURFACE T O  NINE POINTS 

As in Appendix 4, an equation of the second degree surface may be 

that of (A4-6), which is 

In the case c # 0 ,  this equation may be  divided by c to obtain 

which contains nine unknowns: s ix in the symmetric ( 3 x 3 ) matrix and 

three in the vector Fi . For  any point on the surface, the equation (A6-2a) 

can be written explicitly, with a i j  being the i j th element of X , ai being 

the th element of , and a variable point having the coordinates 

x = ( X  y z ) ~ ,  a s  

For  the general cases such as ellipsoid, hyperboloid of one sheet and 

hyperboloid of two sheets, considered a t  the beginning of Section A4-3 

(i.e., with non-singular A and "augmented A" matrices expressed there 

by / A  I #  0 and a# O),, nine points of the surface, furnishing nine equations 

of the type (A6-2b), will be  necessary in order  to solve for  the nrne un- 

knowns. In the matrix notation, it i s  thus obtained that 



where, for i = 1 , 2 ,  . . . , 9 i t  holds that 

Thus, having A and 5 by solving nine equations in nine unknowns in 

(A6-3a), the equation of the second degree surface determined by nine 

p i n t s  is  known in form (A6-2a). From there the canonical form and all 

the necessary information may be computed, using the approach of 
- 

Seetion A4.3, where A, a ,  and c a r e  substituted for by A, a and 1 ,  

respectively. 

Dealing with critical surfaces for range observational mode yields 

c = 0 in the equation (A6-I), due to the fact that the surface passes 

through the origin of the coordinate system of (A6-I), which is the "local 

cooirdinate system" in the main discussion; since any of the ground stations 

1, 2 ,  3 (observing all the satellites) may determine origin of this coordi- 

nate system and any of the other two the direction of its x-axis, it may 

be assumed that the f irst  entry in A matrix is non-zero. 

Dividing (A6-1) in which c = 0 by this element yields an equation 

for the second degree surface a s  



- 
with similar description of the elements in A and 5 a s  given for (A6-2a). 

However, only eight unknowns a r e  now to be determined using eight further 

points (the origin having been used). This will lead to solving of eight 

equations in eight unknowns (all element is now a constant, a,, = 1 ).  

Analogous to the equation (A6-2b), the equation (A6-4a) can be now written 

for a variable point a s  

Similarly towhat was said following the equation (A6-2b), it i s  assumed 

again that I A I # 0 and A # 0. Using eight further surface points in 

(A6-4b), it can be written in a matrix form similar to (A6-3): 

where, for i = 2 , 3 ,  . . . , 9 i t  holds that 

and 

With the conventional numbering of points such a way that i = 1 denoted 

the station 1 at  the origin (of the local coordinate system), i = 2 the sz t ion  

2 on the x-axis and i = 3 the station 3 in the xy plane, the equations jA6-5) 



will be simplified due to y, = 2, = 0 and 23 = 0 ; this gives for the 

first equation of (A6-5): 

Since x2 Z 0 ,  i t  follows that 

Plugging this into (A6-5) the following is obtained: 

from which 

and 

This amounts to solving seven equations in seven unknowns, which, in 
- 

addition to a,, = 1 and a, = -x, , determines the matrix A and the 

vector a .  These can then be used to compute the canonical form of the 



second order  surface using the approach of section A4.3 ,  where A, a ,  and 
- 

c a r e  substituted for by A , a and 0 ,  respectively. 



APPENDIX 7 

APPROXIMATE DISTANCE OF A POINT FROM A GIVEN 

SECOND ORDER SURFACE 

Dealing with critical loci for  the range observational mode brings 

about problems connected with second order surf aces. Specifically, if all 

points of a network lie exactly on certain second order surfaces, the unique 

solution for unknown parameters is impossible and the problem is said to be 

singular. Theref ore, in order to determine whether singularity or  near- singu- 

larity could be caused by certain distribution of points (ground stations and 

satellites), i t  will be necessary to determine whether all the points in consider- 

ation lie on o r  near their critical second order surfaces. With some points f a r  

from these loci, the above mentioned singularity does not occur and it is not of 

particular interest to know exactly how f a r  these points are  from any surface. 

On the other hand i t  i s  important to detect cases when all the points a re  exactly 

on o r  very near their critical surfaces. In these cases it is  desirable to have a 

fairly good idea about the distances of the points from such second order sur- 

faces. 

A7.1 General Approach 

A second order surface can be expressed as  

(X - x , ) ~  M(x - x,) = 1, (A7 -1) 

as seen in Appendix 4, using equations (A4-9) and (A4-10a). When the 

surface is given explicitly, the symmetric matrix M, as  well a s  the vector 

x, are given; x denotes the coordinate vector of a variable point lying on 

the surface. As a function of x, the equation (A7-1) can be written as  

f (x) = constant, 

fo r  which Vf, the gradient, represents a vector perpendicular to the surface 

246 



at point x. It  i s  computed a s  

U'ith n denoting the unit vector perpendicular to  the surface (A7-1) at the 

point represented by x, which will be hereaf ter  called point x, i t  follows: 

n =  M(x - &)/a (A?-2a) 

where 
I 

5; = / M(x - q),. 

The following relation between x  and xl holds (with n properly oriented) 

where xl represents  a known point, while x  represents  a point on the 

surface, which i s  a s  yet  unknown; d, also unknown, is then the desired 

distance, connecting x  and x,, perpendicular to  the surface. If i s  seen tbar; 

(A7-3) represents  three equations in four unknowns, namely the three 

coordinates of x  and the distance d. The fourth equation i s  then represented 

by (A7-1). Using (A7-2a) and (A7-2b), the system of four equations in 

four unknowns may be now written a s  

together with 

The three equations (A7-4a) a r e  of second o rde r  in the unknowns 

d and x, since in this approach n was also a function of the unknown vector 

x. Thus, a simple substitution f o r  x  f rom (A7-4a) into (A7-4b) i s  not 

possible and a different approach would have to take place in order  to 

solve the system of (A7-4a) and (A7-4b), quadratic in the unknowns. One 

such approach will be described in the following section, taking advantage 

of the specification that the distances a r e  not needed to a grea t  accuracy, 

namely f o r  points f a r  f rom the second o rde r  surface, f o r  which the 



distances are  desired only approximately or not at all. 

A7.2 Specific Approach 

The starting equation in this approach will be similar to (A7-I), 

representing a family of the second order surfaces, which a re  said to be 

similar. The surface described by (A7-1) is one of these surfaces, when 

k = 1. It will be called the critical surface. 

As in the previous section, the distance d will pertain to a known 

point represented by x,, or  point x, . However, a new concept permit- 

ting great simplifications will be introduced: the distance d will be measured 

perpendicular to that surface of the family (A7-5), which passes through the 

poin~t xl. Thus the distance will be measured perpendicularly to the 

critical surface only when the two surfaces a re  infinitesimally close and there- 

fore only in these cases will the distance be exact. With the point x1 

moving further from the critical surface the separation between the two 

surfaces will be greater and the angular difference between the normals 

to both surfaces will also grow, depending further on the location of XI; 

thus the computed distance will be decreasing in precision and could 

eventually become completely false, o r  the real solution may not exist at 

4 .  However, even in these cases the purpose of this approach would be 

fulfilled, namely, the results would indicate that the point x, i s  not on o r  very 

close to the critical surface, which is the desired information. On the 

other handywhen x1 is on o r  very near the critical surface, not only would 

this be detected, but also a fairly precise nominal value of the distance in 

question from the surface would be obtained. This was also supported by 

the computer runs with generated points x,. For the above reasons the 

present method seems to be suitable for  detecting of singularity o r  near- 

singularity connected with the second order surfaces and it gives a good idea 



which points and to what extent (depending on their  closeness to the 

surface) could be responsible fo r  it. 

F o r  the surface passing through XI which does not l ie on the 

cr i t ical  surface it holds that k f 1; it will be called "k-surface". The 

constant k fo r  this particular surf ace will be computed a s  

since it i s  a surface f rom the family of (A7-5) and xl l i es  on this surface.  

M and x, a r e  again considered to be known a s  in section A7.2; this makes 

the determination of k possible. F o r  the unit normal  to the k-surface the 

same approach and the same formulas  a s  (A7-2a) and (A7-2b) a r e  used, 

except that x1 will replace x, since that is the point at  which the unit normal 

i s  desired (the difference between the cr i t ical  surface and the k-surface 

r e s t s  in the right hand-side of (A7-5), the constant, which does not alter 

the formula fo r  the gradient). Denoting it again a s  n, it holds that 

where 

The difference between this  and the previous section i s  that n i s  now a 

known vector. Similar to  (A7-3) o r  (A7-4a) it holds that 

where x i s  again an unknown point on the cr i t ical  surface and d the desired 

distance, n being properly oriented (having now the opposite sense with 

respect  to (A7-3)). The main simplification consists now i s  expressing x 

a s  

x = x l  - d n  (AT-8a) 

and substituting it into (A7-4b), i. e., in 



which holds for  point x lying on the critical surface. With this substitution 

(A7-8b) will give: 

which is a quadratic equation in one unknown, d. The f i rs t  term on the 

left side is  equal to k, according to (A7-6). Thus (A7-8c) yields 

where 

and 

q = (k - l)/nT Mn. 

The two solutions for d a re  given by 

indicating, that in general two intersections of the line passing through 

point xl perpendicular to the k-surface with the critical surface will 

exist. If the signs of dl and d, are different, the intersections will take 

place on different sides of the line with respect to xl. The absolute value 

of d will indicate the distance (in chosen units) between the points x, and 

x, whose relation to the distance of x1 from the critical surface has been 

discussed. The shortest of the two computed distances will be associated 

with the closest intersection, which represents the desired information. 

No real solution for d will indicate that the above line does not intersect 

the critical surface, thus in general indicating that the two surfaces a re  

"far apart" with no further specification, which, however, i s  in itself also 

valrtable information. 

With dl and d2 known, some numerical checks may be performed 

and additional information pertaining to the critical surface extracted; namely, 

the positions of two additional points on the critical surface for each point xl 



can be obtained. Position of the two additional points on the critical surfrce 

is  computed by substituting both values of d into (A7-8a). A s  a numerical 

check, the equation (A7-8b) must hold for  each of such additional points. 

Furthermore, it i s  possible to compute the unit normal to the critical 

surface, denoted as v, at any such additional point x (which is  now known) 

by (A7-2a) and (A7-2b), a s  

With  denoting the angle between n and v in the interval < 0,  >, it holds 

that 

cp = a rc  tg (sin d c o s  Q) (AT-1121.) 

where 

and 

sin Q = ./1 - c o s 2 ~  (AT-11b) 

cos 50 = nT v. 

With cp approaching zero the computed distance will approach the distance of 

point xl from the critical surface (measured perpendicularly to the critical 

surface). 

A7.3 Practical Computations with Critical 

Surface in Canonical Form 

Substantial simplifications in computations a re  made when the: 

family of second order surfaces (A7-5) i s  given in canonical form. This  

procedure will be used in practice, after a particular second order surface 

has been obtained in i t s  canonical form according to section A4.3; xl = 

!&,yl, z1IT i s  assumed to have been transformed from the original local 

coordinate system to the canonical coordinate system using (A4-8a). 

Accordingly, 

M = diag. (A, ,X,,X,), 



(A7--5) reads then a s  

x2X1 + Y2X2 + z2A3 = k 

For computation of k, (A7-6) now yields 

n, according to (A7-7a) and (A7-7b), is given a s  

where 

with 
2 2 

s1 =x,2A1 , s2 = yF~:, and s3= z?h3 ; 

this can be also seen directly from (A7-12). 

Due to 

it follows that 

For  the sake of clearness the two solutions for  d will be denoted a s  

$ and d, rather  than dl and d2. The two additional points on the critical 

surface will be denoted as  xa = [x, ya za IT and x, = Txb y, z, IT, associated 

with d, and d, respectively. 

Thus, according to (A7-9a) through (A7-9c) together with (A7-15a) 

and (A7-15b), i t  i s  obtained: 



and 

In these expressions, k was given by (A7-13), * e  by (A7-14b), and 

sl,s, ,  and s3 by (A7-14~). Thus d, and d, ,~epresentingthe main outeonrte 

of these computations, have been obtained. 

Next, the two additional points on the critical surface will be 

computed, according to (A7-8 a), a s  

and 

this, together with (A7-14a) yields 

and 

For  any such points lying on the critical surface the equation (A7-8b), here a s  

X ~ X ~  + yFhz + zfX3 = 1, 

serving a s  a numerical check of computations,must hold; here x,, y,, z,, 

x,, y,, z,, o r  the coordinates of any other point lying on the critical 

surface can be substituted for  x i ,  y,, z,. If the points x, and x, a r e  of 

further interest, they can be transformed back to the original (local) 



coordinate system, according to (A4-8). 

Finally, the unit normals to the critical surface at x,, x,, o r  any 

other point lying on it, can be computed according to (A7-lo), with the 

coordinates of any of these points substituted for  x,, y,, z,: 

where 

For computation of the angles between the unit normal to the k-surface 

at x : ~  and the unit normal to the critical surface at any point, namely at 

q and x,, may be computed according to (A7-lla) through (A7-llc): 

sin cp,  = /I - cos2 q, 

md 

which gives 

cp , = a r c  tg (sin cp, / cos cp,), 

cp, in the interval < 0, T >. 



APPENDIX 8 

CRITICAL STTRFACE FOR FOUR GROUND STATIONS 

A8.1 Critical Surface fo r  Four  Ground Stations in Local 

Coordinates Using Taylor  Expansion of Determinant, a s  

Function of Ground Station Number Four. 

W7hen only four ground stations observe ranges to satell i te points, the 

mat r ix  of Table (1.2-1) will contain only o f i r s t  rows, corresponding to  "for 

station 4" of that table and six non-zero columns corresponding to  these o r o w s  

Thus, these columns will have heading a%, ay,, az,, % %  , and -, 8% 
Y3 Y3 x2 

respectively. As in section 1 .2 ,  the adjustment problem wil be singular if 

rank A < 6. (A8-1) 

N 

From (o x 6) Amatr ix,  (6 x 6) mat r ices  A can be formed using all combinations of 

six rows in x. If (A8-1) holds, then 

will be t rue  fo r  all mat r ices  A. Conversely, it (A8-2) holds fo r  any A ,  then 

also (A8-1) holds. Consequently, (A8-1) and (A8-2) f o r  all mat r ices  A are 

equivalent statements. In the forthcoming investigation only one A mat r ix  wil l  

be considered, i t s  rows corresponding to satell i te points 1, 2, . . . , 6. Then 

the same conclusions will be drawn fo r  all  possible combinations of six satellites, 

F o r  j = 1 ,  2, . . . , 6, A mat r ix  can be read f rom Table (1.2-1) a s  

where 



It will be assumed throughout that 

since for  z, = 0 the four ground stations would lie in a plane. Configurations 

with a11 stations in a plane were investigated in section 1. 3. From what was 

stated there it holds for  four ground stations that 

\ A I  = 0 whenever 2, = 0. (A8-5) 

A s  seen from (A8-3) - (A8-3f), ( A I  can be expressed a s  a function of 

lx+ yqg z4 coordinates; the relation (A8-2) can be thus viewed a s  an equation of 

a surface in q, y4, z,, the order  of which will be now examined. Using Laplace ex- 

pansion for  the last (or  first) three columns, I A I i s  given a s  a sum of signed products 

of $3 x 3 )  minors and their (3 x 3) algebraic complements in all combinations, such 

as  described in [ 6  3 ,  p. 33. One such product will be sufficient in determining 

the order of the surface represented by I A \  = 0, Let it be denoted by E = P T  

where 

Considering (A8-3a) - (A8-3c), i t  i s  seen that Z,, ZJ ,  Z, can be factored out 

P =  

Jpon subtracting the f i r s t  row in this determinant from the second and third 

rows, the only row which will still contain any of ;K, y4, z, will be the f i r s t  

row and thus P will be of order  at most  one in q, y4, z,. No such simpli- 

aj  b, c, 

ak bk C k  

of the f i r s t  determinant and P can be written a s  

fications a re  possible for  T, each row of the corresponding determinant being 
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and T =  

; p = Z , Z J Z ~  

(Xi - 4) (Yi - ~ 4 )  (Zi - z4) 

(XJ -x*) (Yj -Y4) (Z j  -z4) 

(Xk - 4) (Yk - Y4) (Zk - ~ 4 )  

dm em f, 

dn en f n  

, 



of o rde r  exactly one in q ,  y,, z,; consequently, T i s  of o rde r  exactly three 

in ;\k, y,, z4. It  can be then concluded that / A /  i s  of order  a t  mos t  four and at 

least  three in q ,  y,, z,, which means that (A8-2) represents  a fourth o rde r  

surface in q, y,, z,. Furthermore,  this surface passes  through satell i te 

points 1, 2,  . . . 6 associated with A, and ground stations 1, 2,  3. This i s  

easy to see, since whenever Xj , YJ, Z, a r e  plugged f o r  q ,  y,, z,, then 

a s  seen from (A8-3a) - (A8-3f), and when any ground station's coordinates are 

plugged fo r  x,, y,, z,, then \ A ]  = 0 holds a s  well; this  is due to the fact that 

z, becomes zero by this  substitution and then (A8-5) i s  applied. 

Next, an explicit form of ) A /  will be obtained by expanding it in Taylor  

s e r i e s  a s  a function of z,, a t  the point z, = 0. Since \ A /  represents  a poly- 

nomial in z, of order  a t  mos t  four,  this  expansion will have the form: 

The derivative of a determinant with respect  to z, will be  taken a s  a sum of 

six determinants (when dealing with (6 x 6) matr ices) ,  by replacing in all 

possible ways the elements of one column of this  determinant by their  deriva- 

t ives with respect  to z,, according to [6 1, p. 34. As stated in (A8-5), 

da 
With the notations ---' = a; e tc . ,  it i s  obtained f rom (A8-3a) - (A8-3f): 

dz4 



e; = Y, (Y, - Y3)Y 

and 

f = (X: - Y, 2) (X, - x2). 
Y 3  

Thus 

and 

where - 
a = [a!,,=,, 

and 

with 

a = la ,  b, c,'d, e, f, I ,  

b = / a, bj c, d l  e, f, I , 

c = / aj b, c j  d, e; f, I , 

d = / a, bl c, dl e j  f; 1 . 
{The dots inside the determinants have been omitted. ) Upon plugging z4 = 0 

for a, ,  bj ,  c,: d,, e,, f,, it follows that 

when Z j  in each row ( j  = 1, 2,  . . . , 6) is factored out together with 

-Y; (& - ~7 ,  %) from columns 4, 5, and 6 ,  then the above expression becomes 
Y 3 



since there a re  several ways in which to bring other columns besides the 

third column to be constant (for instance, subtracting column one from colwmlre 

four leaves each element of column four to be ( q - x d ;  multiplying column 

three by (x, - x3) and adding it to column four brings each element of col!umn 

four to zero, from which the asserted relation follows). Similarly, upon 

factoring out ZJ for  each row and y4(q-y4 3, for  columns five and six, it 
Y 3 

i s  obtained that 

since subtracting column two form column five and subtracting column one from 

column six brings columns five and six to be constant columns. It also follows 

that 

- 
= z ~ z 2 '  ' '  Z ~ 4 ( x 4 - ~ 4  z) I x J  -%, YJ - ~ 4 ,  Zjy Xj -X3y (Yj -y3), XJ -x2 I = 0, 

upon performing similar equivalence operations for  columns one and four and 

one and six. Finally, 

- X Y x  
d = ZlZ2...zdZ IxJ-qY YJ-y4, Zj, Xj-x3, Yj-y3, - "  2 ) ( ~ J - ~ 2 )  i = 0, z, z, YB 

upon using columns one and four and two and five for  equivalence operations. 
- - - - 

Thus a = b = c = d = 0 ,  which yields 

Due to 

and 

it is  obtained that 



where  

Further,  

where 

and 

also, 

a, = 1 a j  b, cj  d; e, f j  1 

a, = la ,  bj c;d, e j ' f , l  

a, = / aJ bJ c,' d, eJ fJ"/ . 

= / a, bj c; d l  e, f ,  \ = a,, 

b2 = I a, bl C j  d; e; f j  I 9 

where 

cl = / aJ bJ c; d, e; f, 1 = +, 

c2 = / a, b, c, d; e; f J  / = b,, 

c3 = 1 a, b, cj  dj e; f;/; 

f inally,  

where 

dl = 1 a, b, c,' dJ e, f; 1 = a,, 

d2 = I aJ bJ cj  d l  e, f,'j = b,, 

and 



From (A8-lla) - (A8-lld) together with (A8-8), i t  follows that 

thus 

where the ba r  will indicate from now on that such a value was obtained by plug- 

ging z4 = 0 in its unbarred counterpart. Proceeding the same way which led to - - - - 
the obtaining of a, b, c,  d, i t  i s  now found that 

and 



Thus, the using of (A8-12a) yields: 

Due -to (A8-10a) and (A8-lob), it follows that 

where 

md 

where 

md 

where 

md 

where 

m d  

# # 

a,, = / aJ b, dl eJ  f; l = a12 



where 

and 

finally, 

where 

and 

From (A8-14a) - (A8-14f) together with (A8-12) ,  it follows that 

thus 

Now, proceeding a s  in the previous par t s ,  i t  is seen that 

and 



Thus, from (A8-15a): 

From (A8-15), due to (A8-10a) and (A8-lob), i t  holds that 

d4IAI = 2 . 3 4 a,,, ; 
dz44 

thus 

where 

Finally, using (A8-7), (A8-91, (A8-13), (A8-16), and (A8-17), I A 1 i s  obtained 

from (A8-6) a s  follows: 

where 

- - - -  - 
and where &, b, c,, b2,, and a,,, a r e  given 



in (A8-13a), (A8-13b), (A8-13c), (A8-16a), and (A8-17a) respectively. 

From any of these relations i t  i s  c lear  that 

Z j  # 0 (A8--89) 

should hold, saying that no satell i te point can be in plane with the stations 1, 

2, 3, should this method be applicable. 

The condition / A 1 = 0 represents  a fourth o rde r  surface in q ,  y4, z4? as 

i t  was stated ear l ie r ,  since I A 1 was shown to be of o rde r  four in q ,  yqFp zqO 

Due to (A8-18) one can also wri te  this condition as 

where 

G (;'h, Y*, z4) = a2 + a3 z4 + a, z 2  

and G i s  of order  at mos t  two in the variables Q, y4, z4; it means that a2 i s  

of o rde r  at mos t  two, a, a t  most  one, and a, a constant with respect  to these 

variables (this will a lso be verified later).  Since z4 # 0, the expression (A8-20) 

implies that 

G ( q ,  y4, z4) = 0, g ~ s - a n )  

which represents  a second o rde r  surface in q, y,, z4. It  will be proved now 

that this surface passes  through the six satell i te points, 1, 2, . . . , 6 and 

through the three ground stations, 1 ,  2, 3, (since a second o rde r  surface is 

determined by nine points in general,  the above points could be used to deter- 

mine the surface defined by (A8-21) in the way presented in Appendix 6). 'it is 

easy to show that the second o rde r  surface (A8-21) passes  through the six 

satell i te points associated with mat r ix  A. In (A8-5a) i t  was shown that 1 A 1 = 0 

whenever any Xj,  Yj ,  Z j  were plugged f o r  Q, y4, z,. But this  means,  aceord- 

ing to  (A8-20), that 

zj? G (X,, y j ,  Z , )  = 0, 

and since Z j  # 0 a s  stated in (A8-19), this yields 



which proves the asserted statement. A different approach will have to be 

taken to show that this surface also passes through the stations 1, 2, 3. It  

also held that I A 1 = 0 whenever any of the three ground station's coordinates 

were plugged for  ~ q ,  y4, z4, but this was true, a s  it can be seen from (A8-20), 

beeause z, was replaced by zero, while nothing can be said about the second 

arder  surface G = 0 so far.  From the equation (A8-20a) it  i s  now seen that 

whenever % = 0. It will be shown that + = 0 holds if any of these xi,  yf replace 

G~ y4 (2, does not appear in any of (A8-13a), (A8-13b), (A8-13c) whicb. form az). 

From (A8-13a) one can see that 

whenever xl = 0 and y, = 0, o r  x, # 0 and y, = 0, o r  x3 and y, # 0, replace x, 

and y4, Similar considerations yield 
- 
b3 = 0 

using (A8-13b) and 

using (A8-13c). Thus the asserted relation fo r  the three ground stations fol- 

iows and the second order surface G = 0 passes through the six satellite points 

and three ground stations. The considerations and derivations in this section 

have: been based on a s imilar  presentation in [I],  Annex A, o r  in [ l o  1. 

A8.2 Explicit Expression for Second Order Surface G(&, y,, z,) = 0. 

In order to find az, +, Q, necessary for  computation of G ( q ,  y,, z,) from - - - -  - 
(A8-20a), suitable expressions have to be found fo r  b,, b,, c3, bZ2, and alll, 

as seen from (A8-18a) - (A8-18c). If in the determinant on the right side of 

equation (A8-13a) the first row i s  subtracted from all the other rows and the 

determinant developed by the f i r s t  column, a new determinant of (5 x 5) matrix 
- 

is obtained and lo, can be given a s  



which i s  an expression of degree one and two in q, y,. In this and the following 

determinants of (5 x 5) matrices, it is  assumed that j = 2, 3, . . . , 6. If the 

same procedure as above i s  carried out in (A8-13b) with the exception that the 

determinant is developed by the second column, it i s  obtained: 

which i s  of degree one and two in y,. Similarly, for (A8-13c) it follows (deter- 

minant developed by the f i rs t  column): 

which i s  of degree one and two in q ,  y,. Thus, considering (A8-18a), a, is found 

to be of degree one and two in q ,  y,. Next, in the determinant of (A8-16a), ;he 

f i rs t  row will be subtracted from all the other rows, giving thus 



which is of order at most one in &, y,, and thus a, i s  of order  at most one in 
- 

qi;qs y4 (a, = b,, by (A8-18b)). Later the determinant of (6 x 6) matrix in 

{AS-2'6) will be developed by the f i r s t  row, giving thus six determinants of 

(5 x 5) matrices with patterns similar to those in the previously mentioned 

determinants. Finally, considering (A8-17a) with the f i r s t  row of the 

determinant subtracted from the other rows and the determinant developed by 

the third column, it follows that 

- - 
where alll and thus a, (a, = all, by (A8-18c)) i s  a constant with respect to q ,  y4, 

z,, From (A8-20a) and the above results  it i s  now verified that G ( q ,  y4, z4) i s  

38: order one and two and therefore (A8-21) does indeed represent a second 

order surface, A s  a matter  of fact, since 

(following from (A8-20a) and (A8-18a) - (A8-18c)), one can readily find that 

This form contains all the t e rms  of a second degree equation with exception of the 

constant te rm ( this indicates that the second order surface G = 0 passes 

through the origin, i. e.,ground station 1 ,  which i s  clearly true since i t  was 

shown to  pass through all the six satellite points and three ground stations). 
- - - - - 

For practical computations the expressions for  b, b3, c3, bz2 and alll can 

be simplified by using several determinants of (5 x 5) matrices which can be 

easily obtained one from another. For  all these determinants,j = 2, 3,  . . . , 6 

wi l l  be used. F i rs t ,  a determinant of (5 x 5) matrix,called D,will be defined a s  



Next, six determinants will be defined as follows: 

D, . . . replace the f i r s t  column of D by (ZJ - Z,) and change the sign, 

D2 . . . replace the second column of D by (Zj - Z1) and change the sign. 

D3.. . D3= D. 

D4 . . . replace the third column of D by (Z - Z,) and change the sign, 

D5 . . . replace the fourth column of D by (Z - Z1) and change the sign, 

D, . . . replace the fifth column of D by (Z - Z1) and change the sign. 

Further, introduce the notation 

K = Z1 Z2..  . Z,. 

Now it follows from (A8-23), that 

from (A8-24), that 

and from (A8-25), that 

- 
In order to find b2 from (A8-26), the determinant present there will be developed 

by the f i r s t  row as  follows: 



Finally, from (A8-27) it i s  seen that 

Having all the terms necessary to obtain G(%, y4, z4) from (A8-28), it follows 

that 

For the second degree surface as  given by (A8-21), i. e. 

G(%, Y4, z4) = 0, 

the above equation can be divided by (-KD,), since K # 0 (ZJ # 0 for  all j) and 

DG # 0 in general. Consequently, this second order surface can be expressed 

after rearranging the terms as 

From this last equation the second order surface will be expressed in a matrix 

fo rm;  writing x --q, y -y4, z r z4, it follows that 

where A i s  a (3 x 3) symmetric matrix (not to be confused with A matrix of 



(A8-2)) with q !  as the element in its ith row and jth column, a i s  a (column) 

vector written as 

and c i s  a constant term; the variable (column) vector x is written as  

From the relation (A8-33) A-matrix and a-vector are  found to be such that 

and 

a, = -y, 

Furthermore, here 

c = 0. 

When A-matrix and a-vector of the second order surface given by (A8-34) w e r e  

computed numerically, they were the same (within round-off er rors)  as the 

ones computed from fitting of a second order surface to the nine points lying 

on i t  (six satellites points and three grounds stations), according to the 



description given in Appendix 6. 

In conclusion it is emphasized that the problem with six satellite points 

will. be singular if ground station 4 lies on a second order surface which 

oasses through all six satellite points and the three remaining ground stations. 

If more than six satellite points are  observed by the four ground stations, the 

s m e  approach could take place using all possible combinations of six satellite 

points, The problem would then be singular if (A8-2) held for each such 

combination. This means that station 4 would have to lie simultaneously on 

dl second order surfaces defined by stations 1, 2, 3 and any combination of 

six satellites. Since in general nine points define a second order surface, 

these surfaces would have to coincide in order to fulfill such a condition. Thus 

the general conclusion follows: the problem is singular whenever all the satellite 

points and all four ground stations are  lying on one second order surface. 
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